Python 熊猫将一天添加到列

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/20480897/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-18 20:34:03  来源:igfitidea点击:

Pandas add one day to column

pythonpandas

提问by dartdog

I need to add 1 day to each date I want to get the begining date of the following month eg 2014-01-2014 for the 1st item in the dataframe. Tried:

我需要在每个日期添加 1 天以获取下个月的开始日期,例如 2014-01-2014 为数据框中的第一个项目。尝试:

montdist['date'] + pd.DateOffset(1)

Which gives me:

这给了我:

TypeError: cannot use a non-absolute DateOffset in datetime/timedelta operations [<DateOffset>]

Have a Dataframe:

有一个数据框:

    Units   mondist                date
1    6491  0.057785 2013-12-31 00:00:00
2    7377  0.065672 2014-01-31 00:00:00
3    9990  0.088934 2014-02-28 00:00:00
4   10362  0.092245 2014-03-31 00:00:00
5   11271  0.100337 2014-04-30 00:00:00
6   11637  0.103596 2014-05-31 00:00:00
7   10199  0.090794 2014-06-30 00:00:00
8   10486  0.093349 2014-07-31 00:00:00
9    9282  0.082631 2014-08-31 00:00:00
10   8632  0.076844 2014-09-30 00:00:00
11   8204  0.073034 2013-10-31 00:00:00
12   8400  0.074779 2013-11-30 00:00:00

采纳答案by Andy Hayden

Make it a DatetimeIndex first:

首先将其设为 DatetimeIndex:

pd.DatetimeIndex(montdist['date']) + pd.DateOffset(1)

Note: I think there is a feature request that this could work with date columns...

注意:我认为有一个功能要求可以与日期列一起使用...

In action:

在行动:

In [11]: df = pd.DataFrame([[1, 2], [3, 4]], columns=['A', 'B'])

In [12]: df['date'] = pd.to_datetime(['21-11-2013', '22-11-2013'])

In [13]: pd.DatetimeIndex(df.date) + pd.DateOffset(1)
Out[13]: 
<class 'pandas.tseries.index.DatetimeIndex'>
[2013-11-22 00:00:00, 2013-11-23 00:00:00]
Length: 2, Freq: None, Timezone: None

In [14]: pd.DatetimeIndex(df.date) + pd.offsets.Hour(1)
Out[14]: 
<class 'pandas.tseries.index.DatetimeIndex'>
[2013-11-21 01:00:00, 2013-11-22 01:00:00]
Length: 2, Freq: None, Timezone: Non

回答by szu

Try to use timedelta():

尝试使用 timedelta():

mondist['shifted_date']=mondist.date + datetime.timedelta(days=1)

回答by fantabolous

As far as I can tell tshiftis a bit faster than doing math such as + pd.DateOffsetetc. Of course it only applies to Series or Dataframe indices, not columns.. but you could do:

据我所知tshift比做数学等要快一点+ pd.DateOffset。当然它只适用于系列或数据框索引,而不适用于列..但你可以这样做:

df['newdate'] = pd.Series(index=df.index).tshift(periods=1, freq='D').index

If your df is large, this may shave off half the time - at least it did for me, which is why I'm using it.

如果你的 df 很大,这可能会减少一半的时间 - 至少对我来说是这样,这就是我使用它的原因。

回答by merry

No need to turn into an index. Just using .apply()works:

不需要变成索引。只是使用.apply()作品:

df['newdate'] = pd.to_datetime(df['date']).apply(pd.DateOffset(1))

回答by Lucas H

I think that the cleanest way to do this is a variant of szu's answer. Pandas has nearly full support datetime built into its functionality, so there is no need to load datetime; instead, if you are already using pandas, create the new column like this:

我认为最干净的方法是 szu 答案的变体。Pandas 在其功能中几乎完全支持 datetime,因此无需加载 datetime;相反,如果您已经在使用 Pandas,请像这样创建新列:

mondist['shifted_date'] = mondist.date + pd.Timedelta(days=1)

回答by Ryan Bowns

One quick mention. if you are using data-frames and your datatype is datetime64[ns]non indexed, Then I would go as below: Assuming the date column name is 'Date to Change by 1' and you want to change all dates by 1 day.

一个快速提及。如果您使用的是数据框并且您的数据类型datetime64[ns]未编入索引,那么我将如下所示:假设日期列名称是“更改日期为 1”,并且您希望将所有日期更改为 1 天。

import time
from datetime import datetime, timedelta, date, time

before
['Date to Change by 1'] = 1/31/2020

df['Date to Change by 1'] = (pd.to_datetime(df['Date to Change by 1']) + 
timedelta(1)

After
['Date to Change by 1'] = 2/01/2020