来自伪代码的 Java 模拟退火

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/5439350/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-10-30 11:07:59  来源:igfitidea点击:

Java Simulated Annealing from Pseudocode

javaalgorithmartificial-intelligencepseudocodesimulated-annealing

提问by Mus

I am currently working on a project (TSP) and am attempting to convert some simulated annealing pseudocode into Java. I have been successful in the past at converting pseudocode into Java code, however I am unable to convert this successfully.

我目前正在研究一个项目 (TSP),并试图将一些模拟退火伪代码转换为 Java。过去我成功地将伪代码转换为 Java 代码,但是我无法成功转换。

The pseudocode is:

伪代码是:

T0(T and a lowercase 0)    Starting temperature
Iter    Number of iterations
λ    The cooling rate

1.  Set T = T0 (T and a lowercase 0)
2.  Let x = a random solution
3.  For i = 0 to Iter-1
4.  Let f = fitness of x
5.  Make a small change to x to make x'
6.  Let f' = fitness of new point
7.  If f' is worse than f then
8.      Let p = PR(f', f, Ti (T with a lowercase i))
9.      If p > UR(0,1) then
10.         Undo change (x and f)
11.     Else
12.         Let x = x'
13.     End if
14.     Let Ti(T with a lowercase i) + 1 = λTi(λ and T with a lowercase i)
15. End for
Output:  The solution x

If somebody could show me a basic mark-up of this in Java I would be extremely grateful - I just can't seem to figure it out!

如果有人能用 Java 向我展示这个的基本标记,我将非常感激 - 我似乎无法弄清楚!

I am working across multiple classes using a number of functions (which I will not list as it is irrelevant for what I am asking). I already have a smallChange()method and a fitnessfunction - could there be a chance that I would need to create a number of different versions of said methods? For example, I have something like:

我正在使用许多函数跨多个类工作(我不会列出它,因为它与我的要求无关)。我已经有了一个smallChange()方法和一个fitness函数——我是否有可能需要创建多个不同版本的所述方法?例如,我有类似的东西:

public static ArrayList<Integer> smallChange(ArrayList<Integer> solution){

//Code is here.

}

Could I possibly need another version of this method which accepts different parameters? Something along the lines of:

我可能需要接受不同参数的此方法的另一个版本吗?类似的东西:

public static double smallChange(double d){

//Code is here.

}

All I require is a basic idea of how this would look when written in Java - I will be able to adapt it to my code once I know what it should look like in the correct syntax, but I cannot seem to get past this particular hurdle.

我所需要的只是一个关于用 Java 编写时的外观的基本概念 - 一旦我知道它在正确的语法中应该是什么样子,我将能够使其适应我的代码,但我似乎无法克服这个特殊的障碍.

采纳答案by iluxa

The basic code should look like this:

基本代码应如下所示:

public class YourClass {
  public static Solution doYourStuff(double startingTemperature, int numberOfIterations, double coolingRate) {
    double t = startingTemperature;
    Solution x = createRandomSolution();
    double ti = t;

    for (int i = 0; i < numberOfIterations; i ++) {
      double f = calculateFitness(x);
      Solution mutatedX = mutate(x);
      double newF = calculateFitness(mutatedX);
      if (newF < f) {
        double p = PR(); // no idea what you're talking about here
        if (p > UR(0, 1)) { // likewise
          // then do nothing
        } else {
          x = mutatedX;
        }
        ti = t * coolingRate;
      }
    }
    return x;
  }

  static class Solution {
    // no idea what's in here...
  }
}

Now as far as wanting different versions of smallChange() method - totally doable, but you have to read up on inheritancea little bit

现在就想要不同版本的 smallChange() 方法 - 完全可行,但您必须稍微阅读继承

回答by crowne

You can compare your answer to the code provided for the textbook
Artificial Intelligence a Modern Approach.

您可以将您的答案与为教科书《
人工智能现代方法》提供的代码进行比较。

回答by ProfPlum

Also, a Java-based approach to teaching simulated annealing (with sample code) is here:

此外,这里有一种基于 Java 的模拟退火教学方法(带有示例代码):

Neller, Todd. Teaching Stochastic Local Search, in I. Russell and Z. Markov, eds. Proceedings of the 18th International FLAIRS Conference (FLAIRS-2005), Clearwater Beach, Florida, May 15-17, 2005, AAAI Press, pp. 8-13.

内勒,托德。随机局部搜索教学,在 I. Russell 和 Z. Markov,编辑。第 18 届国际 FLAIRS 会议论文集 (FLAIRS-2005),佛罗里达州克利尔沃特海滩,2005 年 5 月 15-17 日,AAAI 出版社,第 8-13 页。

Related resources, references, and demos are here: http://cs.gettysburg.edu/~tneller/resources/sls/index.html

相关资源、参考资料和演示在这里:http: //cs.gettysburg.edu/~tneller/resources/sls/index.html