pandas 使用python为组中的每个元素添加序列号
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/29353096/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Add a sequence number to each element in a group using python
提问by DKA
I have a dataframe of individuals who each have multiple records. I want to enumerate the record in the sequence for each individual in python. Essentially I would like to create the 'sequence' column in the following table:
我有一个数据框,每个人都有多个记录。我想在python中为每个人枚举序列中的记录。基本上我想在下表中创建“序列”列:
patient date sequence
145 20Jun2009 1
145 24Jun2009 2
145 15Jul2009 3
582 09Feb2008 1
582 21Feb2008 2
987 14Mar2010 1
987 02May2010 2
987 12May2010 3
This is essentially the same question as here, but I am working in python and unable to implement the sql solution. I suspect I can use a groupby statement with an iterable count, but have so far been unsuccessful. Thanks!
这基本上与此处的问题相同,但我正在使用 python 并且无法实现 sql 解决方案。我怀疑我可以使用带有可迭代计数的 groupby 语句,但到目前为止还没有成功。谢谢!
采纳答案by Jonathan
The question is how do I sort on multiple columns of data.
问题是如何对多列数据进行排序。
One simple trick is to use the keyparameter to the sortedfunction.
一个简单的技巧是使用排序函数的key参数。
You'll be sorting by a string built from the columns of the array.
您将按从数组的列构建的字符串进行排序。
rows = ...# your source data
def date_to_sortable_string(date):
# use datetime package to convert string to sortable date.
pass
# Assume x[0] === patient_id and x[1] === encounter date
# Sort by patient_id and date
rows_sorted = sorted(rows, key=lambda x: "%0.5d-%s" % (x[0], date_to_sortable_string(x[1])))
for row in rows_sorted:
print row
回答by DKA
I stumbled upon the answer which was embarrassingly simple. The groupby statement has a 'cumcount()' option which will enumerate group items.
我偶然发现了一个简单得令人尴尬的答案。groupby 语句有一个 'cumcount()' 选项,它将枚举组项目。
df['sequence']=df.groupby('patient').cumcount()
The caveat is that the records have to be in the order you want them enumerated.
需要注意的是,记录必须按照您希望枚举的顺序排列。
回答by Andy Hayden
Firstly you want to convert the date column to be a pandas datetime (rather than strings):
首先,您要将日期列转换为Pandas日期时间(而不是字符串):
In [11]: pd.to_datetime(df['date'], format='%d%b%Y')
Out[11]:
0 2009-06-20
1 2009-06-24
2 2009-07-15
3 2008-02-09
4 2008-02-21
5 2010-03-14
6 2010-05-02
7 2010-05-12
Name: date, dtype: datetime64[ns]
Note: see docsfor possible format options.
注意:有关可能的格式选项,请参阅文档。
In [12]: df['date'] = pd.to_datetime(df['date'], format='%d%b%Y')
In [13]: df
Out[13]:
patient date sequence
0 145 2009-06-20 1
1 145 2009-06-24 2
2 145 2009-07-15 3
3 582 2008-02-09 1
4 582 2008-02-21 2
5 987 2010-03-14 1
6 987 2010-05-02 2
7 987 2010-05-12 3
If this isn't in date order (for each patient), I would sort it first:
如果这不是按日期顺序排列的(对于每个患者),我会先对其进行排序:
In [14]: df = df.sort('date')
Now you can groupby and cumcount:
现在您可以 groupby 和 cumcount:
In [15]: g = df.groupby('patient')
In [16]: g.cumcount() + 1
Out[16]:
2 1
3 2
0 1
1 2
4 1
5 2
6 3
dtype: int64
Which is what you want (althout it's out of order):
这就是你想要的(虽然它不正常):
In [17]: df['sequence'] = g.cumcount() + 1
In [18]: df
Out[18]:
patient date sequence
2 582 2008-02-09 1
3 582 2008-02-21 2
0 145 2009-06-24 1
1 145 2009-07-15 2
4 987 2010-03-14 1
5 987 2010-05-02 2
6 987 2010-05-12 3
To rearrange (though you may not need to) use sort_index(or we could reindex if we saved the initial DataFrame's index):*
要重新排列(尽管您可能不需要)使用sort_index(或者如果我们保存了初始 DataFrame 的索引,我们可以重新索引):*
In [19]: df.sort_index()
Out[19]:
patient date sequence
0 145 2009-06-24 1
1 145 2009-07-15 2
2 582 2008-02-09 1
3 582 2008-02-21 2
4 987 2010-03-14 1
5 987 2010-05-02 2
6 987 2010-05-12 3

