pandas 使用python为组中的每个元素添加序列号

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/29353096/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-13 23:08:14  来源:igfitidea点击:

Add a sequence number to each element in a group using python

pythondatabasepandascountgrouping

提问by DKA

I have a dataframe of individuals who each have multiple records. I want to enumerate the record in the sequence for each individual in python. Essentially I would like to create the 'sequence' column in the following table:

我有一个数据框,每个人都有多个记录。我想在python中为每个人枚举序列中的记录。基本上我想在下表中创建“序列”列:

patient  date      sequence
145      20Jun2009        1
145      24Jun2009        2
145      15Jul2009        3
582      09Feb2008        1
582      21Feb2008        2
987      14Mar2010        1
987      02May2010        2
987      12May2010        3

This is essentially the same question as here, but I am working in python and unable to implement the sql solution. I suspect I can use a groupby statement with an iterable count, but have so far been unsuccessful. Thanks!

这基本上与此处的问题相同,但我正在使用 python 并且无法实现 sql 解决方案。我怀疑我可以使用带有可迭代计数的 groupby 语句,但到目前为止还没有成功。谢谢!

采纳答案by Jonathan

The question is how do I sort on multiple columns of data.

问题是如何对多列数据进行排序。

One simple trick is to use the keyparameter to the sortedfunction.

一个简单的技巧是使用排序函数的key参数。

You'll be sorting by a string built from the columns of the array.

您将按从数组的列构建的字符串进行排序。

rows = ...# your source data

def date_to_sortable_string(date):
  # use datetime package to convert string to sortable date.
  pass

# Assume x[0] === patient_id and x[1] === encounter date

# Sort by patient_id and date
rows_sorted = sorted(rows, key=lambda x: "%0.5d-%s" % (x[0], date_to_sortable_string(x[1])))

for row in rows_sorted:
  print row

回答by DKA

I stumbled upon the answer which was embarrassingly simple. The groupby statement has a 'cumcount()' option which will enumerate group items.

我偶然发现了一个简单得令人尴尬的答案。groupby 语句有一个 'cumcount()' 选项,它将枚举组项目。

df['sequence']=df.groupby('patient').cumcount()

The caveat is that the records have to be in the order you want them enumerated.

需要注意的是,记录必须按照您希望枚举的顺序排列。

回答by Andy Hayden

Firstly you want to convert the date column to be a pandas datetime (rather than strings):

首先,您要将日期列转换为Pandas日期时间(而不是字符串):

In [11]: pd.to_datetime(df['date'], format='%d%b%Y')
Out[11]:
0   2009-06-20
1   2009-06-24
2   2009-07-15
3   2008-02-09
4   2008-02-21
5   2010-03-14
6   2010-05-02
7   2010-05-12
Name: date, dtype: datetime64[ns]

Note: see docsfor possible format options.

注意:有关可能的格式选项,请参阅文档

In [12]: df['date'] = pd.to_datetime(df['date'], format='%d%b%Y')

In [13]: df
Out[13]:
   patient       date  sequence
0      145 2009-06-20         1
1      145 2009-06-24         2
2      145 2009-07-15         3
3      582 2008-02-09         1
4      582 2008-02-21         2
5      987 2010-03-14         1
6      987 2010-05-02         2
7      987 2010-05-12         3

If this isn't in date order (for each patient), I would sort it first:

如果这不是按日期顺序排列的(对于每个患者),我会先对其进行排序:

In [14]: df = df.sort('date')

Now you can groupby and cumcount:

现在您可以 groupby 和 cumcount:

In [15]: g = df.groupby('patient')

In [16]: g.cumcount() + 1
Out[16]:
2    1
3    2
0    1
1    2
4    1
5    2
6    3
dtype: int64

Which is what you want (althout it's out of order):

这就是你想要的(虽然它不正常):

In [17]: df['sequence'] = g.cumcount() + 1

In [18]: df
Out[18]:
       patient       date  sequence
2      582 2008-02-09         1
3      582 2008-02-21         2
0      145 2009-06-24         1
1      145 2009-07-15         2
4      987 2010-03-14         1
5      987 2010-05-02         2
6      987 2010-05-12         3

To rearrange (though you may not need to) use sort_index(or we could reindex if we saved the initial DataFrame's index):*

要重新排列(尽管您可能不需要)使用sort_index(或者如果我们保存了初始 DataFrame 的索引,我们可以重新索引):*

In [19]: df.sort_index()
Out[19]:
   patient       date  sequence
0      145 2009-06-24         1
1      145 2009-07-15         2
2      582 2008-02-09         1
3      582 2008-02-21         2
4      987 2010-03-14         1
5      987 2010-05-02         2
6      987 2010-05-12         3