Pandas DataFrame.apply:使用来自两列的数据创建新列

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/44588039/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-14 03:48:06  来源:igfitidea点击:

Pandas DataFrame.apply: create new column with data from two columns

pythonpandaslambdageojson

提问by Ulu83

I have a DataFrame (df) like this:

我有一个像这样的数据帧(df):

PointID  Time                 geojson
----     ----                 ----     
36F      2016-04-01T03:52:30  {'type': 'Point', 'coordinates': [3.961389, 43.123]}
36G      2016-04-01T03:52:50  {'type': 'Point', 'coordinates': [3.543234, 43.789]}

The geojson column contains data in geoJSON format (esentially, a Python dict).

geojson 列包含 geoJSON 格式的数据(本质上是一个 Python 字典)。

I want to create a new column in geoJSON format, which includes the time coordinate. In other words, I want to inject the time information into the geoJSON info.

我想以 geoJSON 格式创建一个新列,其中包括时间坐标。换句话说,我想将时间信息注入到 geoJSON 信息中。

For a single value, I can successfully do:

对于单个值,我可以成功执行以下操作:

oldjson = df.iloc[0]['geojson']
newjson = [df['coordinates'][0], df['coordinates'][1], df.iloc[0]['time'] ]

For a single parameter, I successfully used dataFrame.apply in combination with lambda (thanks to SO: related question

对于单个参数,我成功地将 dataFrame.apply 与 lambda 结合使用(感谢 SO:相关问题

But now, I have two parameters, and I want to use it on the whole DataFrame. As I am not confident with the .apply syntax and lambda, I do not know if this is even possible. I would like to do something like this:

但是现在,我有两个参数,我想在整个 DataFrame 上使用它。由于我对 .apply 语法和 lambda 没有信心,我不知道这是否可能。我想做这样的事情:

def inject_time(geojson, time):
"""
Injects Time dimension into geoJSON coordinates. Expects  a dict in geojson POINT format.
"""
geojson['coordinates'] = [geojson['coordinates'][0], geojson['coordinates'][1], time]
return geojson


df["newcolumn"] = df["geojson"].apply(lambda x: inject_time(x, df['time'])))

...but that does not work, because the function would inject the whole series.

...但这不起作用,因为该函数会注入整个系列。

EDIT: I figured that the format of the timestamped geoJSON should be something like this:

编辑:我认为带时间戳的 geoJSON 的格式应该是这样的:

TimestampedGeoJson({
            "type": "FeatureCollection",
               "features": [
                 {
                   "type": "Feature",
                   "geometry": {
                     "type": "LineString",
                     "coordinates": [[-70,-25],[-70,35],[70,35]],
                     },
                   "properties": {
                     "times": [1435708800000, 1435795200000, 1435881600000]
                     }
                   }
                 ]
               })

So the time element is in the properties element, but this does not change the problem much.

所以时间元素在属性元素中,但这并没有太大改变问题。

回答by jezrael

You need DataFrame.applywith axis=1for processing by rows:

您需要DataFrame.applyaxis=1按行处理:

df['new'] = df.apply(lambda x: inject_time(x['geojson'], x['Time']), axis=1)

#temporary display long string in column
with pd.option_context('display.max_colwidth', 100):
    print (df['new'])

0    {'type': 'Point', 'coordinates': [3.961389, 43.123, '2016-04-01T03:52:30']}
1    {'type': 'Point', 'coordinates': [3.543234, 43.789, '2016-04-01T03:52:50']}
Name: new, dtype: object