Python 获取 TypeError: '(slice(None, None, None), 0)' 是一个无效的键

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/55291667/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-19 20:33:25  来源:igfitidea点击:

Getting TypeError: '(slice(None, None, None), 0)' is an invalid key

pythonmachine-learningknn

提问by Unknown

Trying to plot the decision Boundary of the k-NN Classifier but is unable to do so getting TypeError: '(slice(None, None, None), 0)' is an invalid key`

试图绘制 k-NN 分类器的决策边界,但无法这样做得到 TypeError: '(slice(None, None, None), 0)' is an invalid key`

    h = .01  # step size in the mesh

    # Create color maps
    cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF','#AFAFAF'])
    cmap_bold  = ListedColormap(['#FF0000', '#00FF00', '#0000FF','#AFAFAF'])

    for weights in ['uniform', 'distance']:
        # we create an instance of Neighbours Classifier and fit the data.
        clf = KNeighborsClassifier(n_neighbors=6, weights=weights)
        clf.fit(X_train, y_train)

        # Plot the decision boundary. For that, we will assign a color to each
        # point in the mesh [x_min, x_max]x[y_min, y_max].
        x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
        y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
        xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
                             np.arange(y_min, y_max, h))
        Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])

        # Put the result into a color plot
        Z = Z.reshape(xx.shape)
        plt.figure()
        plt.pcolormesh(xx, yy, Z, cmap=cmap_light)

        # Plot also the training points
        plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold)
        plt.xlim(xx.min(), xx.max())
        plt.ylim(yy.min(), yy.max())
        plt.title("4-Class classification (k = %i, weights = '%s')"
                  % (n_neighbors, weights))

    plt.show()

Got this when running not very sure what it means dont think the clf.fit have a problem but I am not sure

运行时得到这个不太确定这意味着什么不要认为 clf.fit 有问题,但我不确定

  TypeError                                 Traceback (most recent call last)
<ipython-input-394-bef9b05b1940> in <module>
     12         # Plot the decision boundary. For that, we will assign a color to each
     13         # point in the mesh [x_min, x_max]x[y_min, y_max].
---> 14         x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
     15         y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
     16         xx, yy = np.meshgrid(np.arange(x_min, x_max, h),

~\Miniconda3\lib\site-packages\pandas\core\frame.py in __getitem__(self, key)
   2925             if self.columns.nlevels > 1:
   2926                 return self._getitem_multilevel(key)
-> 2927             indexer = self.columns.get_loc(key)
   2928             if is_integer(indexer):
   2929                 indexer = [indexer]

~\Miniconda3\lib\site-packages\pandas\core\indexes\base.py in get_loc(self, key, method, tolerance)
   2654                                  'backfill or nearest lookups')
   2655             try:
-> 2656                 return self._engine.get_loc(key)
   2657             except KeyError:
   2658                 return self._engine.get_loc(self._maybe_cast_indexer(key))

pandas\_libs\index.pyx in pandas._libs.index.IndexEngine.get_loc()

pandas\_libs\index.pyx in pandas._libs.index.IndexEngine.get_loc()

TypeError: '(slice(None, None, None), 0)' is an invalid key

回答by Srikanth Avadhanula

Since you are trying to access directly as array, you are getting that issue

由于您尝试直接作为数组访问,因此您遇到了该问题

Try this ::

尝试这个 ::

from sklearn.impute import SimpleImputer
imputer = SimpleImputer(missing_values = np.nan, strategy = 'mean',verbose=0)
imputer = imputer.fit(X.iloc[:, 1:3])
X.iloc[:, 1:3] = imputer.transform(X.iloc[:, 1:3])

Using iloc/locwill resolve the issue.

使用iloc/loc将解决该问题。

回答by Ali Al Fatly

you need to use iloc/loc to acces df, try adding iloc to X so X.iloc[:,0]

您需要使用 iloc/loc 来访问 df,尝试将 iloc 添加到 X 所以 X.iloc[:,0]

回答by att

I had the same issue with the following

我有以下同样的问题

X = dataset.iloc[:,:-1]

Then I added .valuesproperty, after that it worked without problem

然后我添加了.values属性,之后它就可以正常工作了

X = dataset.iloc[:,:-1].values

回答by Ghazal

I fixed it by converting the pandas dataframe to a numpy array. Got help from here

我通过将 pandas 数据帧转换为 numpy 数组来修复它。从这里得到帮助

回答by ebuzz168

Try run this code before your code writed above.

尝试在上面编写的代码之前运行此代码。

x_min = x_min.values
x_min = x_min.astype('float32')
x_max = x_max.values
y_test1 = x_max.astype('float32')

回答by user702846

I changed my input to a numpy array instead and it worked. I have still not been able to sort this issue with a Pandas dataframe input. If it is urgent in your case, I suggest changing your input to numpy and moving ahead.

我将我的输入改为一个 numpy 数组并且它起作用了。我仍然无法使用 Pandas 数据框输入来解决这个问题。如果您的情况很紧急,我建议您将输入更改为 numpy 并继续前进。

回答by Muhammad Hassan Dawood

from sklearn.impute import SimpleImputer

imputer = SimpleImputer(missing_values= np.nan, strategy= 'mean')

imputer = imputer.fit(X.iloc[:, 1:3])
X = imputer.transform(X.iloc[:, 1:3])

回答by Jagmeet Singh

you have to create the array

你必须创建数组

x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1

x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1

This is present in the dataframe

这存在于数据框中

you have to first convert the dataframe to array by this dataframe.values then apply this

您必须首先通过此 dataframe.values 将数据帧转换为数组,然后应用此