scala 如何在 spark 数据帧 groupBy 中执行 count(*)

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/46417118/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-10-22 09:28:01  来源:igfitidea点击:

How to do count(*) within a spark dataframe groupBy

scalaapache-sparkapache-spark-sql

提问by javadba

My intention is to do the equivalent of the basic sql

我的意图是做相当于基本sql

select shipgrp, shipstatus, count(*) cnt 
from shipstatus group by shipgrp, shipstatus

The examples that I have seen for spark dataframes include rollups by other columns: e.g.

我看到的火花数据帧的例子包括其他列的汇总:例如

df.groupBy($"shipgrp", $"shipstatus").agg(sum($"quantity"))

But no other column is needed in my case shown above. So what is the syntax and/or method call combination here?

但是在我上面显示的情况下不需要其他列。那么这里的语法和/或方法调用组合是什么?

UpdateA reader has suggested this question were a duplicate of dataframe: how to groupBy/count then filter on count in Scala: but that one is about filtering by count: there is no filtering here.

更新一位读者认为这个问题是数据框的重复:如何在 Scala 中分组/计数然后过滤计数:但那个是关于过滤的count:这里没有过滤。

回答by Psidom

You can similarly do count("*")in spark aggfunction:

您可以类似地count("*")在 sparkagg函数中执行以下操作:

df.groupBy("shipgrp", "shipstatus").agg(count("*").as("cnt"))


val df = Seq(("a", 1), ("a", 1), ("b", 2), ("b", 3)).toDF("A", "B")

df.groupBy("A", "B").agg(count("*").as("cnt")).show
+---+---+---+
|  A|  B|cnt|
+---+---+---+
|  b|  2|  1|
|  a|  1|  2|
|  b|  3|  1|
+---+---+---+