Python pandas.to_numeric - 找出它无法解析的字符串
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/40790031/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
pandas.to_numeric - find out which string it was unable to parse
提问by clstaudt
Applying pandas.to_numeric
to a dataframe column which contains strings that represent numbers (and possibly other unparsable strings) results in an error message like this:
应用于pandas.to_numeric
包含表示数字的字符串(可能还有其他无法解析的字符串)的数据框列会导致如下错误消息:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-66-07383316d7b6> in <module>()
1 for column in shouldBeNumericColumns:
----> 2 trainData[column] = pandas.to_numeric(trainData[column])
/usr/local/lib/python3.5/site-packages/pandas/tools/util.py in to_numeric(arg, errors)
113 try:
114 values = lib.maybe_convert_numeric(values, set(),
--> 115 coerce_numeric=coerce_numeric)
116 except:
117 if errors == 'raise':
pandas/src/inference.pyx in pandas.lib.maybe_convert_numeric (pandas/lib.c:53558)()
pandas/src/inference.pyx in pandas.lib.maybe_convert_numeric (pandas/lib.c:53344)()
ValueError: Unable to parse string
Wouldn't it be helpful to see which value failed to parse?
查看哪个值解析失败会不会有帮助?
回答by jezrael
I think you can add parameter errors='coerce'
for convert bad non numeric values to NaN
, then check this values by isnull
and use boolean indexing
:
我认为您可以添加errors='coerce'
用于将错误的非数值转换为 的参数NaN
,然后通过以下方式检查该值isnull
并使用boolean indexing
:
print (df[pd.to_numeric(df.col, errors='coerce').isnull()])
Sample:
样本:
df = pd.DataFrame({'B':['a','7','8'],
'C':[7,8,9]})
print (df)
B C
0 a 7
1 7 8
2 8 9
print (df[pd.to_numeric(df.B, errors='coerce').isnull()])
B C
0 a 7
Or if need find all string in mixed column - numerice with string values check type
of values if is string
:
或者,如果需要在混合列中查找所有字符串 - 带有字符串值的数值检查type
值是否为string
:
df = pd.DataFrame({'B':['a',7, 8],
'C':[7,8,9]})
print (df)
B C
0 a 7
1 7 8
2 8 9
print (df[df.B.apply(lambda x: isinstance(x, str))])
B C
0 a 7
回答by 3novak
I have thought the very same thing, and I don't know if there's a better way, but my current workaround is to search for characters which aren't numbers or periods. This usually turns up the problem. There are cases where multiple periods can cause a problem, but I've found those are rare.
我也想过同样的事情,我不知道是否有更好的方法,但我目前的解决方法是搜索不是数字或句点的字符。这通常会出现问题。在某些情况下,多个时期可能会导致问题,但我发现这种情况很少见。
import pandas as pd
import re
non_numeric = re.compile(r'[^\d.]+')
df = pd.DataFrame({'a': [3,2,'NA']})
df.loc[df['a'].str.contains(non_numeric)]