使用距离矩阵计算 Pandas Dataframe 中行之间的距离

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/20303323/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-13 21:23:55  来源:igfitidea点击:

Distance calculation between rows in Pandas Dataframe using a distance matrix

pythonmatrixpandastime-serieseuclidean-distance

提问by cmiller8

I have the following Pandas DataFrame:

我有以下 Pandas DataFrame:

In [31]:
import pandas as pd
sample = pd.DataFrame({'Sym1': ['a','a','a','d'],'Sym2':['a','c','b','b'],'Sym3':['a','c','b','d'],'Sym4':['b','b','b','a']},index=['Item1','Item2','Item3','Item4'])
In [32]: print(sample)
Out [32]:
      Sym1 Sym2 Sym3 Sym4
Item1    a    a    a    b
Item2    a    c    c    b
Item3    a    b    b    b
Item4    d    b    d    a

and I want to find the elegant way to get the distance between each Itemaccording to this distance matrix:

我想找到一种优雅的方法来Item根据这个距离矩阵获得每个人之间的距离:

In [34]:
DistMatrix = pd.DataFrame({'a': [0,0,0.67,1.34],'b':[0,0,0,0.67],'c':[0.67,0,0,0],'d':[1.34,0.67,0,0]},index=['a','b','c','d'])
print(DistMatrix)
Out[34]:
      a     b     c     d
a  0.00  0.00  0.67  1.34
b  0.00  0.00  0.00  0.67
c  0.67  0.00  0.00  0.00
d  1.34  0.67  0.00  0.00 

For example comparing Item1to Item2would compare aaab-> accb-- using the distance matrix this would be 0+0.67+0.67+0=1.34

例如比较Item1,以Item2将比较aaab- > accb-利用所述距离矩阵,这将是0+0.67+0.67+0=1.34

Ideal output:

理想输出:

       Item1   Item2  Item3  Item4
Item1      0    1.34     0    2.68
Item2     1.34    0      0    1.34
Item3      0      0      0    2.01
Item4     2.68  1.34   2.01    0

采纳答案by behzad.nouri

this is doing twice as much work as needed, but technically works for non-symmetric distance matrices as well ( whatever that is supposed to mean )

这是需要做的两倍的工作,但技术上也适用于非对称距离矩阵(无论这意味着什么)

pd.DataFrame ( { idx1: { idx2:sum( DistMatrix[ x ][ y ]
                                  for (x, y) in zip( row1, row2 ) ) 
                         for (idx2, row2) in sample.iterrows( ) } 
                 for (idx1, row1 ) in sample.iterrows( ) } )

you can make it more readable by writing it in pieces:

您可以通过将其分成几部分来使其更具可读性:

# a helper function to compute distance of two items
dist = lambda xs, ys: sum( DistMatrix[ x ][ y ] for ( x, y ) in zip( xs, ys ) )

# a second helper function to compute distances from a given item
xdist = lambda x: { idx: dist( x, y ) for (idx, y) in sample.iterrows( ) }

# the pairwise distance matrix
pd.DataFrame( { idx: xdist( x ) for ( idx, x ) in sample.iterrows( ) } )

回答by shadowtalker

This is an old question, but there is a Scipy function that does this:

这是一个老问题,但有一个 Scipy 函数可以做到这一点:

from scipy.spatial.distance import pdist, squareform

distances = pdist(sample.values, metric='euclidean')
dist_matrix = squareform(distances)

pdistoperates on Numpy matrices, and DataFrame.valuesis the underlying Numpy NDarray representation of the data frame. The metricargument allows you to select one of several built-in distance metrics, or you can pass in any binary function to use a custom distance. It's very powerful and, in my experience, very fast. The result is a "flat" array that consists only of the upper triangle of the distance matrix (because it's symmetric), not including the diagonal (because it's always 0). squareformthen translates this flattened form into a full matrix.

pdist对 Numpy 矩阵进行操作,并且DataFrame.values是数据帧的底层 Numpy NDarray 表示。该metric参数允许您选择几个内置距离度量之一,或者您可以传入任何二元函数以使用自定义距离。它非常强大,而且根据我的经验,速度非常快。结果是一个“平面”数组,它只包含距离矩阵的上三角形(因为它是对称的),不包括对角线(因为它总是 0)。squareform然后将此扁平形式转换为完整矩阵。

The docshave more info, including a mathematical rundown of the many built-in distance functions.

文档有更多的信息,其中包括了许多内置的距离函数的数学纲要。

回答by Michelle Owen

For a large data, I found a fast way to do this. Assume your data is already in np.array format, named as a.

对于大数据,我找到了一种快速的方法来做到这一点。假设您的数据已经是 np.array 格式,命名为 a。

from sklearn.metrics.pairwise import euclidean_distances
dist = euclidean_distances(a, a)

Below is an experiment to compare the time needed for two approaches:

以下是比较两种方法所需时间的实验:

a = np.random.rand(1000,1000)
import time 
time1 = time.time()
distances = pdist(a, metric='euclidean')
dist_matrix = squareform(distances)
time2 = time.time()
time2 - time1  #0.3639109134674072

time1 = time.time()
dist = euclidean_distances(a, a)
time2 = time.time()
time2-time1  #0.08735871315002441