pandas 熊猫:返回 NaN 行
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/36745912/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Pandas: return NaN rows
提问by Michael Perdue
I am trying to return a df that contains all of the NaN
values for column == years_exp
so that I can identify the corresponding id.thomas
(basically I'm debugging some data that I parsed by hand). I also need to return a df with all min
values. This is what I have tried so far:
我试图返回一个包含所有NaN
值的 dfcolumn == years_exp
以便我可以识别相应的值id.thomas
(基本上我正在调试一些我手动解析的数据)。我还需要返回一个包含所有min
值的 df 。这是我迄今为止尝试过的:
rr.head(5)
years id.thomas years_exp
55 2005 2 17
56 2006 2 18
57 2007 2 19
58 2008 2 20
59 2009 2 21
c = rr
c = c[c.years_exp == 'NaN']
Error:
错误:
TypeError: invalid type comparison
类型错误:无效的类型比较
I'm using syntax that I copied from a youtube video on Pandas. Does anyone have an idea about the error?
我正在使用从 Pandas 上的 YouTube 视频中复制的语法。有没有人知道这个错误?
回答by jezrael
You need isnull
for checking NaN
values:
您需要isnull
检查NaN
值:
print (rr[rr.years_exp.isnull()])
Docs:
文档:
Warning
One has to be mindful that in python (and numpy), the nan's don't compare equal, but None's do. Note that Pandas/numpy uses the fact that np.nan != np.nan, and treats None like np.nan.
警告
必须注意,在 python(和 numpy)中,nan 不相等,但 None 不相等。请注意,Pandas/numpy 使用 np.nan != np.nan 的事实,并将 None 视为 np.nan。
In [11]: None == None
Out[11]: True
In [12]: np.nan == np.nan
Out[12]: False
So as compared to above, a scalar equality comparison versus a None/np.nan doesn't provide useful information.
因此,与上面相比,标量相等比较与 None/np.nan 没有提供有用的信息。
In [13]: df2['one'] == np.nan
Out[13]:
a False
b False
c False
d False
e False
f False
g False
h False
Name: one, dtype: bool
回答by Antonin Bouscarel
You can try with
你可以试试
c = c.loc[c.years_exp == 'NaN']
or
或者
c = c.loc[c.years_exp == None]
or
或者
c = c.loc[c.years_exp.isnull()]