java Spark sql如何在不丢失空值的情况下爆炸
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/39739072/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Spark sql how to explode without losing null values
提问by alexgbelov
I have a Dataframe that I am trying to flatten. As part of the process, I want to explode it, so if I have a column of arrays, each value of the array will be used to create a separate row. For instance,
我有一个数据框,我想把它弄平。作为过程的一部分,我想分解它,所以如果我有一列数组,数组的每个值都将用于创建一个单独的行。例如,
id | name | likes
_______________________________
1 | Luke | [baseball, soccer]
should become
应该成为
id | name | likes
_______________________________
1 | Luke | baseball
1 | Luke | soccer
This is my code
这是我的代码
private DataFrame explodeDataFrame(DataFrame df) {
DataFrame resultDf = df;
for (StructField field : df.schema().fields()) {
if (field.dataType() instanceof ArrayType) {
resultDf = resultDf.withColumn(field.name(), org.apache.spark.sql.functions.explode(resultDf.col(field.name())));
resultDf.show();
}
}
return resultDf;
}
The problem is that in my data, some of the array columns have nulls. In that case, the entire row is deleted. So this dataframe:
问题是在我的数据中,一些数组列有空值。在这种情况下,整行都将被删除。所以这个数据框:
id | name | likes
_______________________________
1 | Luke | [baseball, soccer]
2 | Lucy | null
becomes
变成
id | name | likes
_______________________________
1 | Luke | baseball
1 | Luke | soccer
instead of
代替
id | name | likes
_______________________________
1 | Luke | baseball
1 | Luke | soccer
2 | Lucy | null
How can I explode my arrays so that I don't lose the null rows?
我怎样才能分解我的数组,这样我就不会丢失空行?
I am using Spark 1.5.2 and Java 8
我使用的是 Spark 1.5.2 和 Java 8
回答by zero323
Spark 2.2+
火花 2.2+
You can use explode_outer
function:
您可以使用explode_outer
功能:
import org.apache.spark.sql.functions.explode_outer
df.withColumn("likes", explode_outer($"likes")).show
// +---+----+--------+
// | id|name| likes|
// +---+----+--------+
// | 1|Luke|baseball|
// | 1|Luke| soccer|
// | 2|Lucy| null|
// +---+----+--------+
Spark <= 2.1
火花 <= 2.1
In Scala but Java equivalent should be almost identical (to import individual functions use import static
).
在 Scala 中,Java 等效项应该几乎相同(导入单个函数使用import static
)。
import org.apache.spark.sql.functions.{array, col, explode, lit, when}
val df = Seq(
(1, "Luke", Some(Array("baseball", "soccer"))),
(2, "Lucy", None)
).toDF("id", "name", "likes")
df.withColumn("likes", explode(
when(col("likes").isNotNull, col("likes"))
// If null explode an array<string> with a single null
.otherwise(array(lit(null).cast("string")))))
The idea here is basically to replace NULL
with an array(NULL)
of a desired type. For complex type (a.k.a structs
) you have to provide full schema:
这里的想法是基本取代NULL
有 array(NULL)
希望的类型。对于复杂类型(又名structs
),您必须提供完整的架构:
val dfStruct = Seq((1L, Some(Array((1, "a")))), (2L, None)).toDF("x", "y")
val st = StructType(Seq(
StructField("_1", IntegerType, false), StructField("_2", StringType, true)
))
dfStruct.withColumn("y", explode(
when(col("y").isNotNull, col("y"))
.otherwise(array(lit(null).cast(st)))))
or
或者
dfStruct.withColumn("y", explode(
when(col("y").isNotNull, col("y"))
.otherwise(array(lit(null).cast("struct<_1:int,_2:string>")))))
Note:
注意:
If array Column
has been created with containsNull
set to false
you should change this first (tested with Spark 2.1):
如果数组Column
是用containsNull
set创建的,false
你应该先改变它(用 Spark 2.1 测试):
df.withColumn("array_column", $"array_column".cast(ArrayType(SomeType, true)))
回答by TopGuys
You can use explode_outer()
function.
您可以使用explode_outer()
功能。
回答by nsanglar
Following up on the accepted answer, when the array elements are a complex type it can be difficult to define it by hand (e.g with large structs).
跟进已接受的答案,当数组元素是复杂类型时,可能很难手动定义它(例如,使用大型结构)。
To do it automatically I wrote the following helper method:
为了自动完成,我编写了以下辅助方法:
def explodeOuter(df: Dataset[Row], columnsToExplode: List[String]) = {
val arrayFields = df.schema.fields
.map(field => field.name -> field.dataType)
.collect { case (name: String, type: ArrayType) => (name, type.asInstanceOf[ArrayType])}
.toMap
columnsToExplode.foldLeft(df) { (dataFrame, arrayCol) =>
dataFrame.withColumn(arrayCol, explode(when(size(col(arrayCol)) =!= 0, col(arrayCol))
.otherwise(array(lit(null).cast(arrayFields(arrayCol).elementType)))))
}
Edit: it seems that spark 2.2 and newer have this built in.
编辑:似乎 spark 2.2 和更新版本内置了这个。
回答by Mohana B C
To handle empty map type column: for Spark <= 2.1
处理空地图类型列:对于 Spark <= 2.1
List((1, Array(2, 3, 4), Map(1 -> "a")),
(2, Array(5, 6, 7), Map(2 -> "b")),
(3, Array[Int](), Map[Int, String]())).toDF("col1", "col2", "col3").show()
df.select('col1, explode(when(size(map_keys('col3)) === 0, map(lit("null"), lit("null"))).
otherwise('col3))).show()