Java Hadoop DistributedCache 已弃用 - 首选 API 是什么?
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/21239722/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Hadoop DistributedCache is deprecated - what is the preferred API?
提问by DNA
My map tasks need some configuration data, which I would like to distribute via the Distributed Cache.
我的地图任务需要一些配置数据,我想通过分布式缓存分发这些数据。
The Hadoop MapReduce Tutorialshows the usageof the DistributedCache class, roughly as follows:
Hadoop MapReduce 教程展示了DistributedCache 类的用法,大致如下:
// In the driver
JobConf conf = new JobConf(getConf(), WordCount.class);
...
DistributedCache.addCacheFile(new Path(filename).toUri(), conf);
// In the mapper
Path[] myCacheFiles = DistributedCache.getLocalCacheFiles(job);
...
However, DistributedCache
is marked as deprecatedin Hadoop 2.2.0.
但是,在 Hadoop 2.2.0 中DistributedCache
被标记为已弃用。
What is the new preferred way to achieve this? Is there an up-to-date example or tutorial covering this API?
实现这一目标的新首选方法是什么?是否有涵盖此 API 的最新示例或教程?
采纳答案by user2371156
The APIs for the Distributed Cache can be found in the Job class itself. Check the documentation here: http://hadoop.apache.org/docs/stable2/api/org/apache/hadoop/mapreduce/Job.htmlThe code should be something like
分布式缓存的 API 可以在 Job 类本身中找到。检查此处的文档:http: //hadoop.apache.org/docs/stable2/api/org/apache/hadoop/mapreduce/Job.html代码应该类似于
Job job = new Job();
...
job.addCacheFile(new Path(filename).toUri());
In your mapper code:
在您的映射器代码中:
Path[] localPaths = context.getLocalCacheFiles();
...
回答by jtravaglini
The new DistributedCache API for YARN/MR2 is found in the org.apache.hadoop.mapreduce.Job
class.
用于 YARN/MR2 的新 DistributedCache API 位于org.apache.hadoop.mapreduce.Job
该类中。
Job.addCacheFile()
Unfortunately, there aren't as of yet many comprehensive tutorial-style examples of this.
不幸的是,目前还没有很多全面的教程式示例。
回答by tolgap
To expand on @jtravaglini, the preferred way of using DistributedCache
for YARN/MapReduce 2 is as follows:
为了扩展@jtravaglini,DistributedCache
YARN/MapReduce 2的首选使用方式如下:
In your driver, use the Job.addCacheFile()
在您的驱动程序中,使用 Job.addCacheFile()
public int run(String[] args) throws Exception {
Configuration conf = getConf();
Job job = Job.getInstance(conf, "MyJob");
job.setMapperClass(MyMapper.class);
// ...
// Mind the # sign after the absolute file location.
// You will be using the name after the # sign as your
// file name in your Mapper/Reducer
job.addCacheFile(new URI("/user/yourname/cache/some_file.json#some"));
job.addCacheFile(new URI("/user/yourname/cache/other_file.json#other"));
return job.waitForCompletion(true) ? 0 : 1;
}
And in your Mapper/Reducer, override the setup(Context context)
method:
在您的 Mapper/Reducer 中,覆盖该setup(Context context)
方法:
@Override
protected void setup(
Mapper<LongWritable, Text, Text, Text>.Context context)
throws IOException, InterruptedException {
if (context.getCacheFiles() != null
&& context.getCacheFiles().length > 0) {
File some_file = new File("./some");
File other_file = new File("./other");
// Do things to these two files, like read them
// or parse as JSON or whatever.
}
super.setup(context);
}
回答by patapouf_ai
I had the same problem. And not only is DistributedCach deprecated but getLocalCacheFiles and "new Job" too. So what worked for me is the following:
我有同样的问题。不仅不推荐使用 DistributedCach,而且还弃用 getLocalCacheFiles 和“新作业”。所以对我有用的是以下内容:
Driver:
司机:
Configuration conf = getConf();
Job job = Job.getInstance(conf);
...
job.addCacheFile(new Path(filename).toUri());
In Mapper/Reducer setup:
在 Mapper/Reducer 设置中:
@Override
protected void setup(Context context) throws IOException, InterruptedException
{
super.setup(context);
URI[] files = context.getCacheFiles(); // getCacheFiles returns null
Path file1path = new Path(files[0])
...
}
回答by Hymanie Jiang
I did not use job.addCacheFile(). Instead I used -files option like "-files /path/to/myfile.txt#myfile" as before. Then in the mapper or reducer code I use the method below:
我没有使用 job.addCacheFile()。相反,我像以前一样使用了 -files 选项,如“-files /path/to/myfile.txt#myfile”。然后在映射器或减速器代码中,我使用以下方法:
/**
* This method can be used with local execution or HDFS execution.
*
* @param context
* @param symLink
* @param throwExceptionIfNotFound
* @return
* @throws IOException
*/
public static File findDistributedFileBySymlink(JobContext context, String symLink, boolean throwExceptionIfNotFound) throws IOException
{
URI[] uris = context.getCacheFiles();
if(uris==null||uris.length==0)
{
if(throwExceptionIfNotFound)
throw new RuntimeException("Unable to find file with symlink '"+symLink+"' in distributed cache");
return null;
}
URI symlinkUri = null;
for(URI uri: uris)
{
if(symLink.equals(uri.getFragment()))
{
symlinkUri = uri;
break;
}
}
if(symlinkUri==null)
{
if(throwExceptionIfNotFound)
throw new RuntimeException("Unable to find file with symlink '"+symLink+"' in distributed cache");
return null;
}
//if we run this locally the file system URI scheme will be "file" otherwise it should be a symlink
return "file".equalsIgnoreCase(FileSystem.get(context.getConfiguration()).getScheme())?(new File(symlinkUri.getPath())):new File(symLink);
}
Then in mapper/reducer:
然后在映射器/减速器中:
@Override
protected void setup(Context context) throws IOException, InterruptedException
{
super.setup(context);
File file = HadoopUtils.findDistributedFileBySymlink(context,"myfile",true);
... do work ...
}
Note that if I used "-files /path/to/myfile.txt" directly then I need to use "myfile.txt" to access the file since that is the default symlink name.
请注意,如果我直接使用“-files /path/to/myfile.txt”,那么我需要使用“myfile.txt”来访问该文件,因为这是默认的符号链接名称。
回答by Somum
None of the solution mentioned worked for me in completeness . It could because Hadoop version keeps changing I am using hadoop 2.6.4. Essentially, DistributedCache is deprecated so I didnt want to use that. As some of the post suggest us to use addCacheFile() however, it has changed a bit. Here is how it worked for me
提到的解决方案都没有对我有用。可能是因为 Hadoop 版本不断变化,我使用的是 hadoop 2.6.4。从本质上讲,不推荐使用 DistributedCache,所以我不想使用它。然而,正如一些帖子建议我们使用 addCacheFile() 一样,它已经发生了一些变化。这是它对我的工作方式
job.addCacheFile(new URI("hdfs://X.X.X.X:9000/EnglishStop.txt#EnglishStop.txt"));
Here X.X.X.X can be Master IP address or localhost. The EnglishStop.txt was stored in HDFS at / location.
这里的 XXXX 可以是主 IP 地址或本地主机。EnglishStop.txt 存储在 HDFS 中的 / 位置。
hadoop fs -ls /
The output is
输出是
-rw-r--r-- 3 centos supergroup 1833 2016-03-12 20:24 /EnglishStop.txt
drwxr-xr-x - centos supergroup 0 2016-03-12 19:46 /test
Funny but convenient, #EnglishStop.txt means now we can access it as "EnglishStop.txt" in mapper. Here is the code for the same
有趣但方便,#EnglishStop.txt 意味着现在我们可以在映射器中以“EnglishStop.txt”的形式访问它。这是相同的代码
public void setup(Context context) throws IOException, InterruptedException
{
File stopwordFile = new File("EnglishStop.txt");
FileInputStream fis = new FileInputStream(stopwordFile);
BufferedReader reader = new BufferedReader(new InputStreamReader(fis));
while ((stopWord = reader.readLine()) != null) {
// stopWord is a word read from Cache
}
}
This just worked for me. You can read line from the file stored in HDFS
这对我有用。您可以从存储在 HDFS 中的文件中读取行