scala Spark:有条件地将列添加到数据框

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/34908448/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-10-22 07:57:46  来源:igfitidea点击:

Spark: Add column to dataframe conditionally

scalaapache-sparkapache-spark-sqlspark-dataframe

提问by mcmcmc

I am trying to take my input data:

我正在尝试获取我的输入数据:

A    B       C
--------------
4    blah    2
2            3
56   foo     3

And add a column to the end based on whether B is empty or not:

并根据 B 是否为空在末尾添加一列:

A    B       C     D
--------------------
4    blah    2     1
2            3     0
56   foo     3     1

I can do this easily by registering the input dataframe as a temp table, then typing up a SQL query.

我可以通过将输入数据框注册为临时表,然后键入 SQL 查询来轻松完成此操作。

But I'd really like to know how to do this with just Scala methods and not having to type out a SQL query within Scala.

但我真的很想知道如何仅使用 Scala 方法来做到这一点,而不必在 Scala 中键入 SQL 查询。

I've tried .withColumn, but I can't get that to do what I want.

我试过了.withColumn,但我不能让它做我想做的事。

回答by emeth

Try withColumnwith the function whenas follows:

尝试withColumn使用以下功能when

val sqlContext = new SQLContext(sc)
import sqlContext.implicits._ // for `toDF` and $""
import org.apache.spark.sql.functions._ // for `when`

val df = sc.parallelize(Seq((4, "blah", 2), (2, "", 3), (56, "foo", 3), (100, null, 5)))
    .toDF("A", "B", "C")

val newDf = df.withColumn("D", when($"B".isNull or $"B" === "", 0).otherwise(1))

newDf.show()shows

newDf.show()显示

+---+----+---+---+
|  A|   B|  C|  D|
+---+----+---+---+
|  4|blah|  2|  1|
|  2|    |  3|  0|
| 56| foo|  3|  1|
|100|null|  5|  0|
+---+----+---+---+

I added the (100, null, 5)row for testing the isNullcase.

我添加了(100, null, 5)用于测试isNull案例的行。

I tried this code with Spark 1.6.0but as commented in the code of when, it works on the versions after 1.4.0.

我尝试了这段代码,Spark 1.6.0但正如 的代码中所评论的when,它适用于1.4.0.

回答by Roberto Congiu

My bad, I had missed one part of the question.

我的错,我错过了问题的一部分。

Best, cleanest way is to use a UDF. Explanation within the code.

最好、最干净的方法是使用UDF. 代码中的解释。

// create some example data...BY DataFrame
// note, third record has an empty string
case class Stuff(a:String,b:Int)
val d= sc.parallelize(Seq( ("a",1),("b",2),
     ("",3) ,("d",4)).map { x => Stuff(x._1,x._2)  }).toDF

// now the good stuff.
import org.apache.spark.sql.functions.udf
// function that returns 0 is string empty 
val func = udf( (s:String) => if(s.isEmpty) 0 else 1 )
// create new dataframe with added column named "notempty"
val r = d.select( $"a", $"b", func($"a").as("notempty") )

    scala> r.show
+---+---+--------+
|  a|  b|notempty|
+---+---+--------+
|  a|  1|    1111|
|  b|  2|    1111|
|   |  3|       0|
|  d|  4|    1111|
+---+---+--------+

回答by Justin Pihony

How about something like this?

这样的事情怎么样?

val newDF = df.filter($"B" === "").take(1) match {
  case Array() => df
  case _ => df.withColumn("D", $"B" === "")
}

Using take(1)should have a minimal hit

使用take(1)应该有最小的打击