Python PySpark 中的列过滤

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/31400143/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-19 09:56:22  来源:igfitidea点击:

Column filtering in PySpark

pythonlambdaapache-sparkapache-spark-sqlpyspark

提问by oikonomiyaki

I have a dataframe dfloaded from Hive table and it has a timestamp column, say ts, with string type of format dd-MMM-yy hh.mm.ss.MS a(converted to python datetime library, this is %d-%b-%y %I.%M.%S.%f %p).

我有一个df从 Hive 表加载的数据框,它有一个时间戳列,例如ts,格式为字符串类型dd-MMM-yy hh.mm.ss.MS a(转换为 python datetime 库,这是%d-%b-%y %I.%M.%S.%f %p)。

Now I want to filter rows from the dataframe that are from the last five minutes:

现在我想从过去五分钟的数据框中过滤行:

only_last_5_minutes = df.filter(
    datetime.strptime(df.ts, '%d-%b-%y %I.%M.%S.%f %p') > datetime.now() - timedelta(minutes=5)
)

However, this does not work and I get this message

但是,这不起作用,我收到此消息

TypeError: strptime() argument 1 must be string, not Column

It looks like I have wrong application of column operation and it seems to me I have to create a lambda function to filter each column that satisfies the desired condition, but being a newbie to Python and lambda expression in particular, I don't know how to create my filter correct. Please advise.

看起来我对列操作的应用有误,在我看来我必须创建一个 lambda 函数来过滤满足所需条件的每一列,但作为 Python 和 lambda 表达式的新手,我不知道如何正确创建我的过滤器。请指教。

P.S. I prefer to express my filters as Python native (or SparkSQL) rather than a filter inside Hive sql query expression 'WHERE'.

PS 我更喜欢将我的过滤器表示为 Python 本机(或 SparkSQL),而不是 Hive sql 查询表达式“WHERE”中的过滤器。

preferred:

首选:

df = sqlContext.sql("SELECT * FROM my_table")
df.filter( // filter here)

not preferred:

不推荐:

df = sqlContext.sql("SELECT * FROM my_table WHERE...")

采纳答案by zero323

It is possible to use user defined function.

可以使用用户定义的函数。

from datetime import datetime, timedelta
from pyspark.sql.types import BooleanType, TimestampType
from pyspark.sql.functions import udf, col

def in_last_5_minutes(now):
    def _in_last_5_minutes(then):
        then_parsed = datetime.strptime(then, '%d-%b-%y %I.%M.%S.%f %p')
        return then_parsed > now - timedelta(minutes=5)
    return udf(_in_last_5_minutes, BooleanType())

Using some dummy data:

使用一些虚拟数据:

df = sqlContext.createDataFrame([
    (1, '14-Jul-15 11.34.29.000000 AM'),
    (2, '14-Jul-15 11.34.27.000000 AM'),
    (3, '14-Jul-15 11.32.11.000000 AM'),
    (4, '14-Jul-15 11.29.00.000000 AM'),
    (5, '14-Jul-15 11.28.29.000000 AM')
], ('id', 'datetime'))

now = datetime(2015, 7, 14, 11, 35)
df.where(in_last_5_minutes(now)(col("datetime"))).show()

And as expected we get only 3 entries:

正如预期的那样,我们只得到 3 个条目:

+--+--------------------+
|id|            datetime|
+--+--------------------+
| 1|14-Jul-15 11.34.2...|
| 2|14-Jul-15 11.34.2...|
| 3|14-Jul-15 11.32.1...|
+--+--------------------+

Parsing datetime string all over again is rather inefficient so you may consider storing TimestampTypeinstead.

再次解析日期时间字符串效率很低,因此您可以考虑存储TimestampType

def parse_dt():
    def _parse(dt):
        return datetime.strptime(dt, '%d-%b-%y %I.%M.%S.%f %p')
    return udf(_parse, TimestampType())

df_with_timestamp = df.withColumn("timestamp", parse_dt()(df.datetime))

def in_last_5_minutes(now):
    def _in_last_5_minutes(then):
        return then > now - timedelta(minutes=5)
    return udf(_in_last_5_minutes, BooleanType())

df_with_timestamp.where(in_last_5_minutes(now)(col("timestamp")))

and result:

结果:

+--+--------------------+--------------------+
|id|            datetime|           timestamp|
+--+--------------------+--------------------+
| 1|14-Jul-15 11.34.2...|2015-07-14 11:34:...|
| 2|14-Jul-15 11.34.2...|2015-07-14 11:34:...|
| 3|14-Jul-15 11.32.1...|2015-07-14 11:32:...|
+--+--------------------+--------------------+

Finally it is possible to use raw SQL query with timestamps:

最后,可以使用带有时间戳的原始 SQL 查询:

query = """SELECT * FROM df
     WHERE unix_timestamp(datetime, 'dd-MMM-yy HH.mm.ss.SSSSSS a') > {0}
     """.format(time.mktime((now - timedelta(minutes=5)).timetuple()))

sqlContext.sql(query)

Same as above it would be more efficient to parse date strings once.

与上面相同,解析一次日期字符串会更有效。

If column is already a timestampit possible to use datetimeliterals:

如果列已经是 atimestamp可以使用datetime文字:

from pyspark.sql.functions import lit

df_with_timestamp.where(
    df_with_timestamp.timestamp > lit(now - timedelta(minutes=5)))

EDIT

编辑

Since Spark 1.5 you can parse date string as follows:

从 Spark 1.5 开始,您可以按如下方式解析日期字符串:

from pyspark.sql.functions import from_unixtime, unix_timestamp
from pyspark.sql.types import TimestampType

df.select((from_unixtime(unix_timestamp(
    df.datetime, "yy-MMM-dd h.mm.ss.SSSSSS aa"
))).cast(TimestampType()).alias("datetime"))