Python 如何将 Pandas 单列数据框转换为系列或 numpy 向量
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/33385238/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
How to convert pandas single column data frame to series or numpy vector
提问by neversaint
I have the following data frame just single column.
我有以下数据框,只有单列。
import pandas as pd
tdf = pd.DataFrame({'s1' : [0,1,23.4,10,23]})
Currently it has the following shape.
目前它具有以下形状。
In [54]: tdf.shape
Out[54]: (5, 1)
How can I convert it to a Series or a numpy vector so that the shape is simply (5,)
如何将其转换为系列或 numpy 向量,以便形状简单 (5,)
采纳答案by Anand S Kumar
You can simply index the series you want. Example -
您可以简单地索引您想要的系列。例子 -
tdf['s1']
Demo -
演示 -
In [24]: tdf = pd.DataFrame({'s1' : [0,1,23.4,10,23]})
In [25]: tdf['s1']
Out[25]:
0 0.0
1 1.0
2 23.4
3 10.0
4 23.0
Name: s1, dtype: float64
In [26]: tdf['s1'].shape
Out[26]: (5,)
If you want the values in the series as numpy array, you can use .values
accessor , Example -
如果您希望系列中的值作为 numpy 数组,您可以使用.values
accessor ,例如 -
In [27]: tdf['s1'].values
Out[27]: array([ 0. , 1. , 23.4, 10. , 23. ])