Python 如何使用 Keras 中的训练模型预测输入图像?
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/43469281/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
How to predict input image using trained model in Keras?
提问by ritiek
I'm only beginning with keras and machine learning in general.
我只是从 keras 和机器学习开始。
I trained a model to classify images from 2 classes and saved it using model.save()
. Here is the code I used:
我训练了一个模型来对 2 个类别的图像进行分类,并使用model.save()
. 这是我使用的代码:
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
from keras import backend as K
# dimensions of our images.
img_width, img_height = 320, 240
train_data_dir = 'data/train'
validation_data_dir = 'data/validation'
nb_train_samples = 200 #total
nb_validation_samples = 10 # total
epochs = 6
batch_size = 10
if K.image_data_format() == 'channels_first':
input_shape = (3, img_width, img_height)
else:
input_shape = (img_width, img_height, 3)
model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape=input_shape))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(1))
model.add(Activation('sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
# this is the augmentation configuration we will use for training
train_datagen = ImageDataGenerator(
rescale=1. / 255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
# this is the augmentation configuration we will use for testing:
# only rescaling
test_datagen = ImageDataGenerator(rescale=1. / 255)
train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='binary')
validation_generator = test_datagen.flow_from_directory(
validation_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='binary')
model.fit_generator(
train_generator,
steps_per_epoch=nb_train_samples // batch_size,
epochs=epochs,
validation_data=validation_generator,
validation_steps=5)
model.save('model.h5')
It successfully trained with 0.98 accuracy which is pretty good. To load and test this model on new images, I used the below code:
它以 0.98 的准确率成功训练,非常好。为了在新图像上加载和测试这个模型,我使用了以下代码:
from keras.models import load_model
import cv2
import numpy as np
model = load_model('model.h5')
model.compile(loss='binary_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
img = cv2.imread('test.jpg')
img = cv2.resize(img,(320,240))
img = np.reshape(img,[1,320,240,3])
classes = model.predict_classes(img)
print classes
It outputs:
它输出:
[[0]]
[[0]]
Why wouldn't it give out the actual name of the class and why [[0]]
?
为什么它不给出类的实际名称,为什么[[0]]
?
Thanks in advance.
提前致谢。
采纳答案by DNK
keras predict_classes (docs) outputs A numpy array of class predictions. Which in your model case, the index of neuron of highest activation from your last(softmax) layer. [[0]]
means that your model predicted that your test data is class 0. (usually you will be passing multiple image, and the result will look like [[0], [1], [1], [0]]
)
keras predict_classes ( docs) 输出类预测的 numpy 数组。在您的模型案例中,您的最后一个(softmax)层的最高激活神经元的索引。[[0]]
意味着你的模型预测你的测试数据是 0 类。(通常你会传递多个图像,结果看起来像[[0], [1], [1], [0]]
)
You must convert your actual label (e.g. 'cancer', 'not cancer'
) into binary encoding (0
for 'cancer', 1
for 'not cancer') for binary classification. Then you will interpret your sequence output of [[0]]
as having class label 'cancer'
您必须将实际标签(例如'cancer', 'not cancer'
)转换为二进制编码(0
对于“癌症”,1
对于“非癌症”)进行二进制分类。然后您将您的序列输出解释[[0]]
为具有类标签'cancer'
回答by ritiek
If someone is still struggling to make predictions on images, here is the optimized code to load the saved model and make predictions:
如果有人仍在努力对图像进行预测,这里是加载保存的模型并进行预测的优化代码:
# Modify 'test1.jpg' and 'test2.jpg' to the images you want to predict on
from keras.models import load_model
from keras.preprocessing import image
import numpy as np
# dimensions of our images
img_width, img_height = 320, 240
# load the model we saved
model = load_model('model.h5')
model.compile(loss='binary_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
# predicting images
img = image.load_img('test1.jpg', target_size=(img_width, img_height))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
images = np.vstack([x])
classes = model.predict_classes(images, batch_size=10)
print classes
# predicting multiple images at once
img = image.load_img('test2.jpg', target_size=(img_width, img_height))
y = image.img_to_array(img)
y = np.expand_dims(y, axis=0)
# pass the list of multiple images np.vstack()
images = np.vstack([x, y])
classes = model.predict_classes(images, batch_size=10)
# print the classes, the images belong to
print classes
print classes[0]
print classes[0][0]
回答by auraham
You can use model.predict()
to predict the class of a single image as follows [doc]:
您可以使用model.predict()
以下[doc]来预测单个图像的类别:
# load_model_sample.py
from keras.models import load_model
from keras.preprocessing import image
import matplotlib.pyplot as plt
import numpy as np
import os
def load_image(img_path, show=False):
img = image.load_img(img_path, target_size=(150, 150))
img_tensor = image.img_to_array(img) # (height, width, channels)
img_tensor = np.expand_dims(img_tensor, axis=0) # (1, height, width, channels), add a dimension because the model expects this shape: (batch_size, height, width, channels)
img_tensor /= 255. # imshow expects values in the range [0, 1]
if show:
plt.imshow(img_tensor[0])
plt.axis('off')
plt.show()
return img_tensor
if __name__ == "__main__":
# load model
model = load_model("model_aug.h5")
# image path
img_path = '/media/data/dogscats/test1/3867.jpg' # dog
#img_path = '/media/data/dogscats/test1/19.jpg' # cat
# load a single image
new_image = load_image(img_path)
# check prediction
pred = model.predict(new_image)
In this example, a image is loaded as a numpy
array with shape (1, height, width, channels)
. Then, we load it into the model and predict its class, returned as a real value in the range [0, 1] (binary classification in this example).
在此示例中,图像作为numpy
shape的数组加载(1, height, width, channels)
。然后,我们将其加载到模型中并预测它的类别,以 [0, 1] 范围内的真实值形式返回(本例中为二元分类)。
回答by Javapocalypse
That's because you're getting the numeric value associated with the class. For example if you have two classes cats and dogs, Keras will associate them numeric values 0 and 1. To get the mapping between your classes and their associated numeric value, you can use
那是因为您正在获取与该类相关联的数值。例如,如果您有两个类猫和狗,Keras 会将它们关联到数值 0 和 1。要获取您的类与其关联数值之间的映射,您可以使用
>>> classes = train_generator.class_indices
>>> print(classes)
{'cats': 0, 'dogs': 1}
Now you know the mapping between your classes and indices. So now what you can do is
现在您知道类和索引之间的映射。所以现在你能做的是
if classes[0][0] == 1:
prediction = 'dog'
else:
prediction = 'cat'
if classes[0][0] == 1:
prediction = 'dog'
else:
prediction = 'cat'
回答by Vineeth Sai
Forwarding the example by @ritiek, I'm a beginner in ML too, maybe this kind of formatting will help see the name instead of just class number.
转发@ritiek 的示例,我也是 ML 的初学者,也许这种格式将有助于查看名称而不仅仅是班级编号。
images = np.vstack([x, y])
prediction = model.predict(images)
print(prediction)
i = 1
for things in prediction:
if(things == 0):
print('%d.It is cancer'%(i))
else:
print('%d.Not cancer'%(i))
i = i + 1