Python Pandas Merge (pd.merge) 如何设置索引和连接
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/14341805/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Pandas Merge (pd.merge) How to set the index and join
提问by user1911092
I have two pandas dataframes: dfLeft and dfRight with the date as the index.
我有两个熊猫数据框:dfLeft 和 dfRight,以日期为索引。
dfLeft:
df左:
cusip factorL
date
2012-01-03 XXXX 4.5
2012-01-03 YYYY 6.2
....
2012-01-04 XXXX 4.7
2012-01-04 YYYY 6.1
....
dfRight:
右:
idc__id factorR
date
2012-01-03 XXXX 5.0
2012-01-03 YYYY 6.0
....
2012-01-04 XXXX 5.1
2012-01-04 YYYY 6.2
Both have a shape close to (121900,3)
两者的形状都接近 (121900,3)
I tried the following merge:
我尝试了以下合并:
test = pd.merge(dfLeft, dfRight, left_index=True, right_index=True, left_on='cusip', right_on='idc__id', how = 'inner')
This gave test a shape of (60643500, 6).
这给了 test 一个形状(60643500, 6)。
Any recommendations on what is going wrong here? I want it to merge based on both date and cusip/idc_id. Note: for this example the cusips are lined up, but in reality that may not be so.
关于这里出了什么问题的任何建议?我希望它根据日期和 cusip/idc_id 进行合并。注意:对于这个例子,尖头是一字排开的,但实际上可能并非如此。
Thanks.
谢谢。
Expected Output test:
预期输出测试:
cusip factorL factorR
date
2012-01-03 XXXX 4.5 5.0
2012-01-03 YYYY 6.2 6.0
....
2012-01-04 XXXX 4.7 5.1
2012-01-04 YYYY 6.1 6.2
采纳答案by Andy Hayden
You could append 'cuspin'and 'idc_id'as a indices to your DataFrames before you join(here's how it would work on the first couple of rows):
您可以在您之前将'cuspin'和'idc_id'作为索引附加到您的数据帧join(这是它在前几行上的工作方式):
In [10]: dfL
Out[10]:
cuspin factorL
date
2012-01-03 XXXX 4.5
2012-01-03 YYYY 6.2
In [11]: dfL1 = dfLeft.set_index('cuspin', append=True)
In [12]: dfR1 = dfRight.set_index('idc_id', append=True)
In [13]: dfL1
Out[13]:
factorL
date cuspin
2012-01-03 XXXX 4.5
YYYY 6.2
In [14]: dfL1.join(dfR1)
Out[14]:
factorL factorR
date cuspin
2012-01-03 XXXX 4.5 5
YYYY 6.2 6
回答by Theodros Zelleke
Reset the indices and then merge on multiple (column-)keys:
重置索引,然后在多个(列)键上合并:
dfLeft.reset_index(inplace=True)
dfRight.reset_index(inplace=True)
dfMerged = pd.merge(dfLeft, dfRight,
left_on=['date', 'cusip'],
right_on=['date', 'idc__id'],
how='inner')
You can then reset 'date' as an index:
然后,您可以将“日期”重置为索引:
dfMerged.set_index('date', inplace=True)
Here's an example:
下面是一个例子:
raw1 = '''
2012-01-03 XXXX 4.5
2012-01-03 YYYY 6.2
2012-01-04 XXXX 4.7
2012-01-04 YYYY 6.1
'''
raw2 = '''
2012-01-03 XYXX 45.
2012-01-03 YYYY 62.
2012-01-04 XXXX -47.
2012-01-05 YYYY 61.
'''
import pandas as pd
from StringIO import StringIO
df1 = pd.read_table(StringIO(raw1), header=None,
delim_whitespace=True, parse_dates=[0], skiprows=1)
df2 = pd.read_table(StringIO(raw2), header=None,
delim_whitespace=True, parse_dates=[0], skiprows=1)
df1.columns = ['date', 'cusip', 'factorL']
df2.columns = ['date', 'idc__id', 'factorL']
print pd.merge(df1, df2,
left_on=['date', 'cusip'],
right_on=['date', 'idc__id'],
how='inner')
which gives
这使
date cusip factorL_x idc__id factorL_y
0 2012-01-03 00:00:00 YYYY 6.2 YYYY 62
1 2012-01-04 00:00:00 XXXX 4.7 XXXX -47

