pandas 根据条件从数据框中删除行

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/47931248/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-14 04:56:37  来源:igfitidea点击:

Remove rows from dataframe based on condition

pythonpandasdataframeconditional-statements

提问by Gavin Gamble

I know this has to have been addressed before, but I cannot seem to find an answer that works

我知道之前必须解决这个问题,但我似乎找不到有效的答案

I have the columns that I want to test the condition against and I want to remove all rows where their value in any of the three columns is above a given value.

我有要测试条件的列,我想删除三列中任何一列中的值高于给定值的所有行。

x  a  b  c  d  
1  2  1  3  4  
2  3  5  2  2  
3  3  3  3  2  
4  1  2  3  3  

if I ran against this dataframe, with my cutoff value being anything greater than 3, then I should be returned with

如果我针对这个数据框运行,并且我的截止值大于 3,那么我应该返回

x  a  b  c  d
3  3  3  3  2
4  1  2  3  3

回答by rpanai

If your dataframe is dfthen df[~df[df>3].any(axis=1)]

如果您的数据帧是df那么df[~df[df>3].any(axis=1)]

回答by Sahil Dahiya

You can remove rows like:

您可以删除如下行:

import pandas as pd
import numpy as np

df.loc[df.x>=3,:]

You can also use conditions using numpy logical_and and logical_or if you have upper and lower limit

如果您有上限和下限,您还可以使用 numpy logical_and 和 logical_or 使用条件

df = df.loc[np.logical_and(dd.x<=3,df.x<=0),:] 

You can also use ~

还可以用~

df.loc[~df.x.isin([1,2]),:] 

回答by Gabriel A

Something like this should work.

像这样的事情应该有效。

cols = ["a" , "b" , "c"]
greater_than_3 = (df[cols]>3).any(axis=1)
df = df[!greater_than_3]