SICP练习1.3征求意见

时间:2020-03-06 15:01:08  来源:igfitidea点击:

我正在尝试通过SICP学习方案。练习1.3的内容如下:定义一个以三个数字为参数并返回两个较大数字的平方和的过程。请评论如何改善我的解决方案。

(define (big x y)
    (if (> x y) x y))

(define (p a b c)
    (cond ((> a b) (+ (square a) (square (big b c))))
          (else (+ (square b) (square (big a c))))))

解决方案

对我来说还好,我们有什么要改进的地方吗?

我们可以执行以下操作:

(define (max2 . l)
  (lambda ()
    (let ((a (apply max l)))
      (values a (apply max (remv a l))))))

(define (q a b c)
  (call-with-values (max2 a b c)
    (lambda (a b)
      (+ (* a a) (* b b)))))

(define (skip-min . l)
  (lambda ()
    (apply values (remv (apply min l) l))))

(define (p a b c)
  (call-with-values (skip-min a b c)
    (lambda (a b)
      (+ (* a a) (* b b)))))

而且此(proc p)可以轻松转换为处理任意数量的参数。

" big"称为" max"。使用标准库功能。

我的方法是不同的。无需进行大量测试,我只需将所有三个的平方相加,然后减去最小的平方。

(define (exercise1.3 a b c)
  (let ((smallest (min a b c))
        (square (lambda (x) (* x x))))
    (+ (square a) (square b) (square c) (- (square smallest)))))

当然,我们是否喜欢这种方法还是一堆if测试都取决于我们。

使用SRFI 95的替代实施:

(define (exercise1.3 . args)
  (let ((sorted (sort! args >))
        (square (lambda (x) (* x x))))
    (+ (square (car sorted)) (square (cadr sorted)))))

如上,但是作为一个单行(感谢synx @ freenode #scheme);还需要SRFI 1和SRFI 26:

(define (exercise1.3 . args)
  (apply + (map! (cut expt <> 2) (take! (sort! args >) 2))))

我们还可以对列表进行排序,并添加已排序列表的第一个和第二个元素的平方:

(require (lib "list.ss")) ;; I use PLT Scheme

(define (exercise-1-3 a b c)
  (let* [(sorted-list (sort (list a b c) >))
         (x (first sorted-list))
         (y (second sorted-list))]
    (+ (* x x) (* y y))))

那这样的东西呢?

(define (p a b c)
  (if (> a b)
      (if (> b c)
          (+ (square a) (square b))
          (+ (square a) (square c)))
      (if (> a c)
          (+ (square a) (square b))
          (+ (square b) (square c)))))

这是另一种方法:

#!/usr/bin/env mzscheme
#lang scheme/load

(module ex-1.3 scheme/base
  (define (ex-1.3 a b c)
    (let* ((square (lambda (x) (* x x)))
           (p (lambda (a b c) (+ (square a) (square (if (> b c) b c))))))
      (if (> a b) (p a b c) (p b a c))))

  (require scheme/contract)
  (provide/contract [ex-1.3 (-> number? number? number? number?)]))

;; tests
(module ex-1.3/test scheme/base
  (require (planet "test.ss" ("schematics" "schemeunit.plt" 2))
           (planet "text-ui.ss" ("schematics" "schemeunit.plt" 2)))
  (require 'ex-1.3)

  (test/text-ui
   (test-suite
    "ex-1.3"
    (test-equal? "1 2 3" (ex-1.3 1 2 3) 13)
    (test-equal? "2 1 3" (ex-1.3 2 1 3) 13)
    (test-equal? "2 1. 3.5" (ex-1.3 2 1. 3.5) 16.25)
    (test-equal? "-2 -10. 3.5" (ex-1.3 -2 -10. 3.5) 16.25)
    (test-exn "2+1i 0 0" exn:fail:contract? (lambda () (ex-1.3 2+1i 0 0)))
    (test-equal? "all equal" (ex-1.3 3 3 3) 18))))

(require 'ex-1.3/test)

例子:

$ mzscheme ex-1.3.ss
6 success(es) 0 failure(s) 0 error(s) 6 test(s) run
0

我认为仅使用文字介绍之前介绍的概念是很重要的,这里有一个不同的解决方案:

(define (smallest-of-three a b c)
        (if (< a b)
            (if (< a c) a c)
            (if (< b c) b c)))

(define (square a)
        (* a a))

(define (sum-of-squares-largest a b c) 
        (+ (square a)
           (square b)
           (square c)
           (- (square (smallest-of-three a b c)))))

我只使用书中介绍的概念,就可以做到这一点:

(define (square x) (* x x))

(define (sum-of-squares x y) (+ (square x) (square y)))

(define (min x y) (if (< x y) x y))

(define (max x y) (if (> x y) x y))

(define (sum-squares-2-biggest x y z)
  (sum-of-squares (max x y) (max z (min x y))))

我使用下面的代码来做到这一点,该代码使用内置的min,max和square过程。它们非常简单,仅需使用到目前为止所介绍的内容即可实现。

(define (sum-of-highest-squares x y z)
   (+ (square (max x y))
      (square (max (min x y) z))))

在斯科特·霍夫曼(Scott Hoffman)和一些irc帮助的帮助下,我更正了错误的代码,这是

(define (p a b c)
    (cond ((> a b)
        (cond ((> b c)
            (+ (square a) (square b)))
            (else (+ (square a) (square c)))))
        (else
            (cond ((> a c)
                (+ (square b) (square a)))
                (else (+ (square b) (square c))))))

我已经去了:

(define (procedure a b c)
    (let ((y (sort (list a b c) >)) (square (lambda (x) (* x x))))
        (+ (square (first y)) (square(second y)))))