pandas 以相反的顺序遍历 DataFrame 行索引

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/16140174/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-13 20:46:50  来源:igfitidea点击:

Iterating through DataFrame row index in reverse order

pythonpandas

提问by sashkello

I know how to iterate through the rows of a pandas DataFrame:

我知道如何遍历 Pandas DataFrame 的行:

for id, value in df.iterrows():

but now I'd like to go through the rows in reverse order (idis numeric, but doesn't coincide with row number). Firstly I thought of doing a sort on index data.sort(ascending = False)and then running the same iteration procedure, but it didn't work (it seem to still go from smaller idto larger).

但现在我想以相反的顺序浏览行(id是数字,但与行号不一致)。首先我想对索引进行排序data.sort(ascending = False),然后运行相同的迭代过程,但它不起作用(它似乎仍然从较小id到较大)。

How can I accomplish this?

我怎样才能做到这一点?

回答by root

Iterating through a DataFrameis usually a bad idea, unless you use Cython. If you really have to, you can use the slice notation to reverse the DataFrame:

DataFrame除非您使用 Cython,否则遍历 a通常是一个坏主意。如果您真的必须这样做,您可以使用切片符号来反转DataFrame

In [8]: import pandas as pd

In [9]: pd.DataFrame(np.arange(20).reshape(4,5))
Out[9]: 
    0   1   2   3   4
0   0   1   2   3   4
1   5   6   7   8   9
2  10  11  12  13  14
3  15  16  17  18  19

In [10]: pd.DataFrame(np.arange(20).reshape(4,5))[::-1]
Out[10]: 
    0   1   2   3   4
3  15  16  17  18  19
2  10  11  12  13  14
1   5   6   7   8   9
0   0   1   2   3   4

In [11]: for row in pd.DataFrame(np.arange(20).reshape(4,5))[::-1].iterrows():
    ...:     print row
    ...:     
(3, 0    15
1    16
2    17
3    18
4    19
Name: 3)
(2, 0    10
1    11
2    12
3    13
4    14
Name: 2)
(1, 0    5
1    6
2    7
3    8
4    9
Name: 1)
(0, 0    0
1    1
2    2
3    3
4    4
Name: 0)