Pandas - 在列中找到第一个非空值
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/42137529/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Pandas - find first non-null value in column
提问by code base 5000
If I have a series that has either NULL or some non-null value. How can I find the 1st row where the value is not NULL so I can report back the datatype to the user. If the value is non-null all values are the same datatype in that series.
如果我有一个具有 NULL 或某些非空值的系列。如何找到值不为 NULL 的第一行,以便我可以向用户报告数据类型。如果该值为非空,则该系列中的所有值都是相同的数据类型。
Thanks
谢谢
回答by jezrael
You can use first_valid_index
with select by loc
:
您可以first_valid_index
与 select by 一起使用loc
:
s = pd.Series([np.nan,2,np.nan])
print (s)
0 NaN
1 2.0
2 NaN
dtype: float64
print (s.first_valid_index())
1
print (s.loc[s.first_valid_index()])
2.0
# If your Series contains ALL NaNs, you'll need to check as follows:
s = pd.Series([np.nan, np.nan, np.nan])
idx = s.first_valid_index() # Will return None
first_valid_value = s.loc[idx] if idx is not None else None
print(first_valid_value)
None
回答by PdevG
For a series this will return the first no null value:
对于一个系列,这将返回第一个非空值:
Creating Series s:
创建系列:
s = pd.Series(index=[2,4,5,6], data=[None, None, 2, None])
which creates this Series:
这创建了这个系列:
2 NaN
4 NaN
5 2.0
6 NaN
dtype: float64
You can get the first non-NaN value by using:
您可以使用以下方法获取第一个非 NaN 值:
s.loc[~s.isnull()].iloc[0]
which returns
返回
2.0
If you on the other hand have a dataframe like this one:
另一方面,如果您有这样的数据框:
df = pd.DataFrame(index=[2,4,5,6], data=np.asarray([[None, None, 2, None], [1, None, 3, 4]]).transpose(),
columns=['a', 'b'])
which looks like this:
看起来像这样:
a b
2 None 1
4 None None
5 2 3
6 None 4
you can select per column the first non null value using this (for column a):
您可以使用此选择每列的第一个非空值(对于 a 列):
df.a.loc[~df.a.isnull()].iloc[0]
or if you want the first row containing no Null values anywhere you can use:
或者,如果您希望第一行不包含 Null 值,则可以使用:
df.loc[~df.isnull().sum(1).astype(bool)].iloc[0]
Which returns:
返回:
a 2
b 3
Name: 5, dtype: object
回答by Daniil Mashkin
You can also use get
method instead
您也可以使用get
方法代替
(Pdb) type(audio_col)
<class 'pandas.core.series.Series'>
(Pdb) audio_col.first_valid_index()
19
(Pdb) audio_col.get(first_audio_idx)
'first-not-nan-value.ogg'