scala 如何从DataFrame获取最后一行?
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/45406762/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
How to get the last row from DataFrame?
提问by mentongwu
I hava a DataFrame,the DataFrame hava two column 'value' and 'timestamp',,the 'timestmp' is ordered,I want to get the last row of the DataFrame,what should I do?
我有一个DataFrame,DataFrame有两列'value'和'timestamp','timestmp'是有序的,我想得到DataFrame的最后一行,我该怎么办?
this is my input:
这是我的输入:
+-----+---------+
|value|timestamp|
+-----+---------+
| 1| 1|
| 4| 2|
| 3| 3|
| 2| 4|
| 5| 5|
| 7| 6|
| 3| 7|
| 5| 8|
| 4| 9|
| 18| 10|
+-----+---------+
this is my code:
这是我的代码:
val arr = Array((1,1),(4,2),(3,3),(2,4),(5,5),(7,6),(3,7),(5,8),(4,9),(18,10))
var df=m_sparkCtx.parallelize(arr).toDF("value","timestamp")
this is my expected result:
这是我的预期结果:
+-----+---------+
|value|timestamp|
+-----+---------+
| 18| 10|
+-----+---------+
采纳答案by Alper t. Turker
I'd simply reduce:
我只想reduce:
df.reduce { (x, y) =>
if (x.getAs[Int]("timestamp") > y.getAs[Int]("timestamp")) x else y
}
回答by Mimii Cheng
Try this, it works for me.
试试这个,它对我有用。
df.orderBy($"value".desc).show(1)
回答by Danylo Zherebetskyy
I would use simply the query that - orders your table by descending order - takes 1st value from this order
我会简单地使用查询 - 按降序对您的表进行排序 - 从该订单中获取第一个值
df.createOrReplaceTempView("table_df")
query_latest_rec = """SELECT * FROM table_df ORDER BY value DESC limit 1"""
latest_rec = self.sqlContext.sql(query_latest_rec)
latest_rec.show()
回答by Raphael Roth
The most efficient way is to reduceyour DataFrame. This gives you a single row which you can convert back to a DataFrame, but as it contains only 1 record, this does not make much sense.
最有效的方法是reduce你的 DataFrame。这为您提供了一行,您可以将其转换回 DataFrame,但由于它仅包含 1 条记录,因此这没有多大意义。
sparkContext.parallelize(
Seq(
df.reduce {
(a, b) => if (a.getAs[Int]("timestamp") > b.getAs[Int]("timestamp")) a else b
} match {case Row(value:Int,timestamp:Int) => (value,timestamp)}
)
)
.toDF("value","timestamp")
.show
+-----+---------+
|value|timestamp|
+-----+---------+
| 18| 10|
+-----+---------+
Less efficient (as it needs shuffling) although shorter is this solution:
虽然这个解决方案更短,但效率较低(因为它需要改组):
df
.where($"timestamp" === df.groupBy().agg(max($"timestamp")).map(_.getInt(0)).collect.head)
回答by ktheitroadalo
If your timestamp column is unique and is in increasing order then there are following ways to get the last row
如果您的时间戳列是唯一的并且按递增顺序排列,则可以通过以下方式获取最后一行
println(df.sort($"timestamp", $"timestamp".desc).first())
// Output [1,1]
df.sort($"timestamp", $"timestamp".desc).take(1).foreach(println)
// Output [1,1]
df.where($"timestamp" === df.count()).show
Output:
输出:
+-----+---------+
|value|timestamp|
+-----+---------+
| 18| 10|
+-----+---------+
If not create a new column with the index and select the last index as below
如果没有使用索引创建一个新列并选择最后一个索引,如下所示
val df1 = spark.sqlContext.createDataFrame(
df.rdd.zipWithIndex.map {
case (row, index) => Row.fromSeq(row.toSeq :+ index)
},
StructType(df.schema.fields :+ StructField("index", LongType, false)))
df1.where($"timestamp" === df.count()).drop("index").show
Output:
输出:
+-----+---------+
|value|timestamp|
+-----+---------+
| 18| 10|
+-----+---------+
回答by Suneel
Java:
爪哇:
Dataset<Row> sortDF = inputDF.orderBy(org.apache.spark.sql.functions.col(config.getIncrementingColumn()).desc());
Row row = sortDF.first()

