scala 如何将 spark DataFrame 转换为 RDD mllib LabeledPoints?

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/35966921/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-10-22 08:04:13  来源:igfitidea点击:

How to convert spark DataFrame to RDD mllib LabeledPoints?

scalaapache-sparkrddpcaapache-spark-mllib

提问by Tianyi Wang

I tried to apply PCA to my data and then apply RandomForest to the transformed data. However, PCA.transform(data) gave me a DataFrame but I need a mllib LabeledPoints to feed my RandomForest. How can I do that? My code:

我尝试将 PCA 应用于我的数据,然后将 RandomForest 应用于转换后的数据。但是,PCA.transform(data) 给了我一个 DataFrame,但我需要一个 mllib LabeledPoints 来提供我的 RandomForest。我怎样才能做到这一点?我的代码:

    import org.apache.spark.mllib.util.MLUtils
    import org.apache.spark.{SparkConf, SparkContext}
    import org.apache.spark.mllib.tree.RandomForest
    import org.apache.spark.mllib.tree.model.RandomForestModel
    import org.apache.spark.ml.feature.PCA
    import org.apache.spark.mllib.regression.LabeledPoint
    import org.apache.spark.mllib.linalg.Vectors


    val dataset = MLUtils.loadLibSVMFile(sc, "data/mnist/mnist.bz2")

    val splits = dataset.randomSplit(Array(0.7, 0.3))

    val (trainingData, testData) = (splits(0), splits(1))

    val trainingDf = trainingData.toDF()

    val pca = new PCA()
    .setInputCol("features")
    .setOutputCol("pcaFeatures")
    .setK(100)
    .fit(trainingDf)

    val pcaTrainingData = pca.transform(trainingDf)

    val numClasses = 10
    val categoricalFeaturesInfo = Map[Int, Int]()
    val numTrees = 10 // Use more in practice.
    val featureSubsetStrategy = "auto" // Let the algorithm choose.
    val impurity = "gini"
    val maxDepth = 20
    val maxBins = 32

    val model = RandomForest.trainClassifier(pcaTrainingData, numClasses, categoricalFeaturesInfo,
        numTrees, featureSubsetStrategy, impurity, maxDepth, maxBins)


     error: type mismatch;
     found   : org.apache.spark.sql.DataFrame
     required: org.apache.spark.rdd.RDD[org.apache.spark.mllib.regression.LabeledPoint]

I tried the following two possible solutions but they didn't work:

我尝试了以下两种可能的解决方案,但没有奏效:

 scala> val pcaTrainingData = trainingData.map(p => p.copy(features = pca.transform(p.features)))
 <console>:39: error: overloaded method value transform with alternatives:
   (dataset: org.apache.spark.sql.DataFrame)org.apache.spark.sql.DataFrame <and>
   (dataset: org.apache.spark.sql.DataFrame,paramMap: org.apache.spark.ml.param.ParamMap)org.apache.spark.sql.DataFrame <and>
   (dataset: org.apache.spark.sql.DataFrame,firstParamPair: org.apache.spark.ml.param.ParamPair[_],otherParamPairs: org.apache.spark.ml.param.ParamPair[_]*)org.apache.spark.sql.DataFrame
  cannot be applied to (org.apache.spark.mllib.linalg.Vector)

And:

和:

     val labeled = pca
    .transform(trainingDf)
    .map(row => LabeledPoint(row.getDouble(0), row(4).asInstanceOf[Vector[Int]]))

     error: type mismatch;
     found   : scala.collection.immutable.Vector[Int]
     required: org.apache.spark.mllib.linalg.Vector

(I have imported org.apache.spark.mllib.linalg.Vectors in the above case)

(我在上面的例子中导入了 org.apache.spark.mllib.linalg.Vectors)

Any help?

有什么帮助吗?

回答by Tzach Zohar

The correct approach here is the second one you tried - mapping each Rowinto a LabeledPointto get an RDD[LabeledPoint]. However, it has two mistakes:

这里的正确方法是您尝试的第二种方法 - 将每个映射Row到 aLabeledPoint以获取RDD[LabeledPoint]. 但是,它有两个错误:

  1. The correct Vectorclass (org.apache.spark.mllib.linalg.Vector) does NOT take type arguments (e.g. Vector[Int]) - so even though you had the right import, the compiler concluded that you meant scala.collection.immutable.Vectorwhich DOES.
  2. The DataFrame returned from PCA.fit()has 3 columns, and you tried to extract column number 4. For example, showing first 4 lines:

    +-----+--------------------+--------------------+
    |label|            features|         pcaFeatures|
    +-----+--------------------+--------------------+
    |  5.0|(780,[152,153,154...|[880.071111851977...|
    |  1.0|(780,[158,159,160...|[-41.473039034112...|
    |  2.0|(780,[155,156,157...|[931.444898405036...|
    |  1.0|(780,[124,125,126...|[25.5114585648411...|
    +-----+--------------------+--------------------+
    

    To make this easier - I prefer using the column namesinstead of their indices.

  1. 正确的Vector类 ( org.apache.spark.mllib.linalg.Vector) 不接受类型参数(例如Vector[Int]) - 所以即使您有正确的导入,编译器也会得出结论,您的意思是scala.collection.immutable.Vector哪个 DOES。
  2. 从返回的 DataFramePCA.fit()有 3 列,您尝试提取列号 4。例如,显示前 4 行:

    +-----+--------------------+--------------------+
    |label|            features|         pcaFeatures|
    +-----+--------------------+--------------------+
    |  5.0|(780,[152,153,154...|[880.071111851977...|
    |  1.0|(780,[158,159,160...|[-41.473039034112...|
    |  2.0|(780,[155,156,157...|[931.444898405036...|
    |  1.0|(780,[124,125,126...|[25.5114585648411...|
    +-----+--------------------+--------------------+
    

    为了使这更容易 - 我更喜欢使用列而不是它们的索引。

So here's the transformation you need:

所以这是您需要的转换:

val labeled = pca.transform(trainingDf).rdd.map(row => LabeledPoint(
   row.getAs[Double]("label"),   
   row.getAs[org.apache.spark.mllib.linalg.Vector]("pcaFeatures")
))