Pandas 填充组内缺失的日期和值
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/44978196/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Pandas filling missing dates and values within group
提问by broccoli
I've a data frame that looks like the following
我有一个如下所示的数据框
x = pd.DataFrame({'user': ['a','a','b','b'], 'dt': ['2016-01-01','2016-01-02', '2016-01-05','2016-01-06'], 'val': [1,33,2,1]})
What I would like to be able to do is find the minimum and maximum date within the date column and expand that column to have all the dates there while simultaneously filling in 0
for the val
column. So the desired output is
我希望能够做的是在日期列中找到最小和最大日期,并扩展该列以包含所有日期,同时填写0
该val
列。所以期望的输出是
dt user val
0 2016-01-01 a 1
1 2016-01-02 a 33
2 2016-01-03 a 0
3 2016-01-04 a 0
4 2016-01-05 a 0
5 2016-01-06 a 0
6 2016-01-01 b 0
7 2016-01-02 b 0
8 2016-01-03 b 0
9 2016-01-04 b 0
10 2016-01-05 b 2
11 2016-01-06 b 1
I've tried the solution mentioned hereand herebut they aren't what I'm after. Any pointers much appreciated.
回答by ayhan
Initial Dataframe:
初始数据帧:
dt user val
0 2016-01-01 a 1
1 2016-01-02 a 33
2 2016-01-05 b 2
3 2016-01-06 b 1
First, convert the dates to datetime:
首先,将日期转换为日期时间:
x['dt'] = pd.to_datetime(x['dt'])
Then, generate the dates and unique users:
然后,生成日期和唯一用户:
dates = x.set_index('dt').resample('D').asfreq().index
>> DatetimeIndex(['2016-01-01', '2016-01-02', '2016-01-03', '2016-01-04',
'2016-01-05', '2016-01-06'],
dtype='datetime64[ns]', name='dt', freq='D')
users = x['user'].unique()
>> array(['a', 'b'], dtype=object)
This will allow you to create a MultiIndex:
这将允许您创建一个 MultiIndex:
idx = pd.MultiIndex.from_product((dates, users), names=['dt', 'user'])
>> MultiIndex(levels=[[2016-01-01 00:00:00, 2016-01-02 00:00:00, 2016-01-03 00:00:00, 2016-01-04 00:00:00, 2016-01-05 00:00:00, 2016-01-06 00:00:00], ['a', 'b']],
labels=[[0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5], [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]],
names=['dt', 'user'])
You can use that to reindex your DataFrame:
您可以使用它来重新索引您的 DataFrame:
x.set_index(['dt', 'user']).reindex(idx, fill_value=0).reset_index()
Out:
dt user val
0 2016-01-01 a 1
1 2016-01-01 b 0
2 2016-01-02 a 33
3 2016-01-02 b 0
4 2016-01-03 a 0
5 2016-01-03 b 0
6 2016-01-04 a 0
7 2016-01-04 b 0
8 2016-01-05 a 0
9 2016-01-05 b 2
10 2016-01-06 a 0
11 2016-01-06 b 1
which then can be sorted by users:
然后可以按用户排序:
x.set_index(['dt', 'user']).reindex(idx, fill_value=0).reset_index().sort_values(by='user')
Out:
dt user val
0 2016-01-01 a 1
2 2016-01-02 a 33
4 2016-01-03 a 0
6 2016-01-04 a 0
8 2016-01-05 a 0
10 2016-01-06 a 0
1 2016-01-01 b 0
3 2016-01-02 b 0
5 2016-01-03 b 0
7 2016-01-04 b 0
9 2016-01-05 b 2
11 2016-01-06 b 1
回答by piRSquared
As @ayhan suggests
正如@ayhan 所建议的那样
x.dt = pd.to_datetime(x.dt)
One-liner using mostly @ayhan's ideas while incorporating stack
/unstack
and fill_value
单行主要使用@ayhan 的想法,同时结合stack
/unstack
和fill_value
x.set_index(
['dt', 'user']
).unstack(
fill_value=0
).asfreq(
'D', fill_value=0
).stack().sort_index(level=1).reset_index()
dt user val
0 2016-01-01 a 1
1 2016-01-02 a 33
2 2016-01-03 a 0
3 2016-01-04 a 0
4 2016-01-05 a 0
5 2016-01-06 a 0
6 2016-01-01 b 0
7 2016-01-02 b 0
8 2016-01-03 b 0
9 2016-01-04 b 0
10 2016-01-05 b 2
11 2016-01-06 b 1