Python 文本处理:NLTK 和 Pandas

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/34784004/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-14 00:30:27  来源:igfitidea点击:

Python text processing: NLTK and pandas

pythonpandasmachine-learningnltk

提问by IVR

I'm looking for an effective way to construct a Term Document Matrix in Python that can be used together with extra data.

我正在寻找一种在 Python 中构建可与额外数据一起使用的术语文档矩阵的有效方法。

I have some text data with a few other attributes. I would like to run some analyses on the text and I would like to be able to correlate features extracted from text (such as individual word tokens or LDA topics) with the other attributes.

我有一些带有其他一些属性的文本数据。我想对文本进行一些分析,并且我希望能够将从文本中提取的特征(例如单个单词标记或 LDA 主题)与其他属性相关联。

My plan was load the data as a pandas data frame and then each response will represent a document. Unfortunately, I ran into an issue:

我的计划是将数据作为 Pandas 数据框加载,然后每个响应将代表一个文档。不幸的是,我遇到了一个问题:

import pandas as pd
import nltk

pd.options.display.max_colwidth = 10000

txt_data = pd.read_csv("data_file.csv",sep="|")
txt = str(txt_data.comment)
len(txt)
Out[7]: 71581 

txt = nltk.word_tokenize(txt)
txt = nltk.Text(txt)
txt.count("the")
Out[10]: 45

txt_lines = []
f = open("txt_lines_only.txt")
for line in f:
    txt_lines.append(line)

txt = str(txt_lines)
len(txt)
Out[14]: 1668813

txt = nltk.word_tokenize(txt)
txt = nltk.Text(txt)
txt.count("the")
Out[17]: 10086

Note that in both cases, text was processed in such a way that only the anything but spaces, letters and ,.?! was removed (for simplicity).

请注意,在这两种情况下,文本的处理方式只有空格、字母和 ,.?! 被删除(为简单起见)。

As you can see a pandas field converted into a string returns fewer matches and the length of the string is also shorter.

如您所见,转换为字符串的 Pandas 字段返回的匹配项更少,并且字符串的长度也更短。

Is there any way to improve the above code?

有没有办法改进上面的代码?

Also, str(x)creates 1 big string out of the comments while [str(x) for x in txt_data.comment]creates a list object which cannot be broken into a bag of words. What is the best way to produce a nltk.Textobject that will retain document indices? In other words I'm looking for a way to create a Term Document Matrix, R's equivalent of TermDocumentMatrix()from tmpackage.

此外,str(x)从评论中创建 1 个大字符串,同时[str(x) for x in txt_data.comment]创建一个列表对象,该对象不能分解为一袋单词。生成nltk.Text保留文档索引的对象的最佳方法是什么?换句话说,我正在寻找一种创建术语文档矩阵的方法,R 相当于TermDocumentMatrix()fromtm包。

Many thanks.

非常感谢。

回答by Stefan

The benefit of using a pandasDataFramewould be to apply the nltkfunctionality to each rowlike so:

使用 a 的好处是pandasDataFramenltk功能应用于每个人,row如下所示:

word_file = "/usr/share/dict/words"
words = open(word_file).read().splitlines()[10:50]
random_word_list = [[' '.join(np.random.choice(words, size=1000, replace=True))] for i in range(50)]

df = pd.DataFrame(random_word_list, columns=['text'])
df.head()

                                                text
0  Aaru Aaronic abandonable abandonedly abaction ...
1  abampere abampere abacus aback abalone abactor...
2  abaisance abalienate abandonedly abaff abacina...
3  Ababdeh abalone abac abaiser abandonable abact...
4  abandonable abandon aba abaiser abaft Abama ab...

len(df)

50

txt = df.text.apply(word_tokenize)
txt.head()

0    [Aaru, Aaronic, abandonable, abandonedly, abac...
1    [abampere, abampere, abacus, aback, abalone, a...
2    [abaisance, abalienate, abandonedly, abaff, ab...
3    [Ababdeh, abalone, abac, abaiser, abandonable,...
4    [abandonable, abandon, aba, abaiser, abaft, Ab...

txt.apply(len)

0     1000
1     1000
2     1000
3     1000
4     1000
....
44    1000
45    1000
46    1000
47    1000
48    1000
49    1000
Name: text, dtype: int64

As a result, you get the .count()for each rowentry:

因此,您将获得.count()每个row条目的:

txt = txt.apply(lambda x: nltk.Text(x).count('abac'))
txt.head()

0    27
1    24
2    17
3    25
4    32

You can then sum the result using:

然后,您可以使用以下方法对结果求和:

txt.sum()

1239