Python 导入错误:没有名为 sklearn.cross_validation 的模块
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/30667525/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
ImportError: No module named sklearn.cross_validation
提问by arthurckl
I am using python 2.7 in Ubuntu 14.04. I installed scikit-learn, numpy and matplotlib with these commands:
我在 Ubuntu 14.04 中使用 python 2.7。我使用以下命令安装了 scikit-learn、numpy 和 matplotlib:
sudo apt-get install build-essential python-dev python-numpy \
python-numpy-dev python-scipy libatlas-dev g++ python-matplotlib \
ipython
But when I import these packages:
但是当我导入这些包时:
from sklearn.cross_validation import train_test_split
It returns me this error:
它返回给我这个错误:
ImportError: No module named sklearn.cross_validation
What I need to do?
我需要做什么?
采纳答案by Dima Lituiev
It must relate to the renaming and deprecation of cross_validation
sub-module to model_selection
. Try substituting cross_validation
to model_selection
它必须与cross_validation
子模块的重命名和弃用有关model_selection
。尝试替换cross_validation
为model_selection
回答by Richard Rublev
Make sure you have Anacondainstalled and then create a virtualenv using conda. This will ensure all the imports work
确保您已安装Anaconda,然后使用 conda 创建一个 virtualenv。这将确保所有导入工作
Python 2.7.9 |Anaconda 2.2.0 (64-bit)| (default, Mar 9 2015, 16:20:48)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
Anaconda is brought to you by Continuum Analytics.
Please check out: http://continuum.io/thanks and https://binstar.org
>>> from sklearn.cross_validation import train_test_split
回答by nantitv
May be it's due to the deprecation of sklearn.cross_validation. Please replace sklearn.cross_validation with sklearn.model_selection
可能是由于 sklearn.cross_validation 的弃用。请将 sklearn.cross_validation 替换为 sklearn.model_selection
Ref- https://github.com/amueller/scipy_2015_sklearn_tutorial/issues/60
参考- https://github.com/amueller/scipy_2015_sklearn_tutorial/issues/60
回答by ayat ullah sony
train_test_split is now in model_selection. Just type:
train_test_split 现在在 model_selection 中。只需输入:
from sklearn.model_selection import train_test_split
it should work
它应该工作
回答by ROHAN YEOLE
Splitting the dataset into the Training set and Test set
将数据集拆分为训练集和测试集
from sklearn.model_selection import train_test_split
回答by Murat ?ahin
I guess cross selection is not active anymore. We should use instead model selection. You can write it to run, from sklearn.model_selection import train_test_split
我猜交叉选择不再活跃了。我们应该改用模型选择。你可以写它来运行,from sklearn.model_selection import train_test_split
Thats it.
就是这样。
回答by baya prakash reddy
Past : from sklearn.cross_validation
(This package is deprecated in 0.18 version from 0.20 onwards it is changed to from sklearn import model_selection
).
过去:(from sklearn.cross_validation
从 0.20 开始,该软件包在 0.18 版本中已弃用,改为from sklearn import model_selection
)。
Present: from sklearn import model_selection
展示: from sklearn import model_selection
Example 2:
示例 2:
Past : from sklearn.cross_validation import cross_val_score
(Version 0.18 which is deprecated)
过去:(from sklearn.cross_validation import cross_val_score
已弃用的 0.18 版)
Present : from sklearn.model_selection import cross_val_score
展示 : from sklearn.model_selection import cross_val_score
回答by Asad
sklearn.cross_validation
has changed to
已更改为
sklearn.model_selection
Checkout the documentation here: https://scikit-learn.org/stable/modules/cross_validation.html
在此处查看文档:https: //scikit-learn.org/stable/modules/cross_validation.html
回答by Tanmoy Bhowmick
sklearn.cross_validation
is now changed to sklearn.model_selection
sklearn.cross_validation
现在改为 sklearn.model_selection
Just use
只需使用
from sklearn.model_selection import train_test_split
I think that will work.
我认为这会奏效。
回答by Aniket Mukherjee
cross_validation was deprecated some time ago, try switching it out with model_selection
cross_validation 前段时间已被弃用,请尝试使用 model_selection 将其切换