Pandas 按时间窗口分组
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/22769047/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Pandas group by time windows
提问by Kafonek
EDIT: Session generation from log file analysis with pandasseems to be exactly what I was looking for.
编辑:使用Pandas 从日志文件分析中生成会话似乎正是我正在寻找的。
I have a dataframe that includes non-unique time stamps, and I'd like to group them by time windows. The basic logic would be -
我有一个包含非唯一时间戳的数据框,我想按时间窗口对它们进行分组。基本逻辑是——
1) Create a time range from each time stamp by adding n minutes before and after the time stamp.
1) 通过在时间戳前后添加 n 分钟,从每个时间戳创建一个时间范围。
2) Group by time ranges that overlap. The end effect here would be that a time window would be as small as a single time stamp +/- the time buffer, but there is no cap on how large a time window could be, as long as multiple events were less distance apart than the time buffer
2) 按重叠的时间范围分组。这里的最终效果是时间窗口将与单个时间戳 +/- 时间缓冲区一样小,但时间窗口的大小没有上限,只要多个事件之间的距离小于时间缓冲
It feels like a df.groupby(pd.TimeGrouper(minutes=n)) is the right answer, but I don't know how to have the TimeGrouper create dynamic time ranges when it sees events that are within a time buffer.
感觉 df.groupby(pd.TimeGrouper(minutes=n)) 是正确的答案,但我不知道如何让 TimeGrouper 在看到时间缓冲区内的事件时创建动态时间范围。
For instance, if I try a TimeGrouper('20s') against a set of events: 10:34:00, 10:34:08, 10:34:08, 10:34:15, 10:34:28 and 10:34:54, then pandas will give me three groups (events falling between 10:34:00 - 10:34:20, 10:34:20 - 10:34:40, and 10:34:40-10:35:00). I would like to just get two groups back, 10:34:00 - 10:34:28, since there is no more than a 20 second gap between events in that time range, and a second group that is 10:34:54.
例如,如果我针对一组事件尝试 TimeGrouper('20s'):10:34:00、10:34:08、10:34:08、10:34:15、10:34:28 和 10 :34:54,然后pandas会给我三组(事件发生在10:34:00 - 10:34:20、10:34:20 - 10:34:40和10:34:40-10:35之间) :00)。我只想让两组返回,10:34:00 - 10:34:28,因为在那个时间范围内事件之间的间隔不超过 20 秒,第二组是 10:34:54 .
What is the best way to find temporal windows that are not static bins of time ranges?
找到不是静态时间范围的时间窗口的最佳方法是什么?
Given a Series that looks something like -
给定一个看起来像的系列 -
time
0 2013-01-01 10:34:00+00:00
1 2013-01-01 10:34:12+00:00
2 2013-01-01 10:34:28+00:00
3 2013-01-01 10:34:54+00:00
4 2013-01-01 10:34:55+00:00
5 2013-01-01 10:35:19+00:00
6 2013-01-01 10:35:30+00:00
If I do a df.groupby(pd.TimeGrouper('20s')) on that Series, I would get back 5 group, 10:34:00-:20, :20-:40, :40-10:35:00, etc. What I want to do is have some function that creates elastic timeranges.. as long as events are within 20 seconds, expand the timerange. So I expect to get back -
如果我在那个系列上做一个 df.groupby(pd.TimeGrouper('20s')) ,我会回到 5 组,10:34:00-:20, :20-:40, :40-10:35: 00 等。我想要做的是有一些创建弹性时间范围的功能.. 只要事件在 20 秒内,扩大时间范围。所以我希望能回来——
2013-01-01 10:34:00 - 2013-01-01 10:34:48
0 2013-01-01 10:34:00+00:00
1 2013-01-01 10:34:12+00:00
2 2013-01-01 10:34:28+00:00
2013-01-01 10:34:54 - 2013-01-01 10:35:15
3 2013-01-01 10:34:54+00:00
4 2013-01-01 10:34:55+00:00
2013-01-01 10:35:19 - 2013-01-01 10:35:50
5 2013-01-01 10:35:19+00:00
6 2013-01-01 10:35:30+00:00
Thanks.
谢谢。
回答by Jeff
This is how to use to create a custom grouper. (requires pandas >= 0.13) for the timedelta computations, but otherwise would work in other versions.
这是创建自定义石斑鱼的方法。(需要 pandas >= 0.13)用于 timedelta 计算,但在其他版本中也可以使用。
Create your series
创建您的系列
In [31]: s = Series(range(6),pd.to_datetime(['20130101 10:34','20130101 10:34:08', '20130101 10:34:08', '20130101 10:34:15', '20130101 10:34:28', '20130101 10:34:54','20130101 10:34:55','20130101 10:35:12']))
In [32]: s
Out[32]:
2013-01-01 10:34:00 0
2013-01-01 10:34:08 1
2013-01-01 10:34:08 2
2013-01-01 10:34:15 3
2013-01-01 10:34:28 4
2013-01-01 10:34:54 5
2013-01-01 10:34:55 6
2013-01-01 10:35:12 7
dtype: int64
This just computes the time difference in seconds between successive elements, but could actually be anything
这只是计算连续元素之间的时间差(以秒为单位),但实际上可以是任何东西
In [33]: indexer = s.index.to_series().order().diff().fillna(0).astype('timedelta64[s]')
In [34]: indexer
Out[34]:
2013-01-01 10:34:00 0
2013-01-01 10:34:08 8
2013-01-01 10:34:08 0
2013-01-01 10:34:15 7
2013-01-01 10:34:28 13
2013-01-01 10:34:54 26
2013-01-01 10:34:55 1
2013-01-01 10:35:12 17
dtype: float64
Arbitrariy assign things < 20s to group 0, else to group 1. This could also be more arbitrary. if the diff from previous is < 0 BUT the total diff (from first) is > 50 make in group 2.
任意将小于 20 秒的事物分配给第 0 组,否则分配给第 1 组。这也可能更加随意。如果与之前的差异 < 0 但总差异(从第一个开始)在第 2 组中大于 50。
In [35]: grouper = indexer.copy()
In [36]: grouper[indexer<20] = 0
In [37]: grouper[indexer>20] = 1
In [95]: grouper[(indexer<20) & (indexer.cumsum()>50)] = 2
In [96]: grouper
Out[96]:
2013-01-01 10:34:00 0
2013-01-01 10:34:08 0
2013-01-01 10:34:08 0
2013-01-01 10:34:15 0
2013-01-01 10:34:28 0
2013-01-01 10:34:54 1
2013-01-01 10:34:55 2
2013-01-01 10:35:12 2
dtype: float64
Groupem (can also use an apply here)
Groupem(也可以在此处使用 apply)
In [97]: s.groupby(grouper).sum()
Out[97]:
0 10
1 5
2 13
dtype: int64
回答by Arseniy
You might want consider using apply:
您可能需要考虑使用apply:
def my_grouper(datetime_value):
return some_group(datetime_value)
df.groupby(df['date_time'].apply(my_grouper))
It's up to you to implement just any grouping logic in your grouper function. Btw, merging overlapping time ranges is kind of iterative task: for example, A = (0, 10), B = (20, 30), C = (10, 20). After C appears, all three, A, B and C should be merged.
您可以在 grouper 函数中实现任何分组逻辑。顺便说一句,合并重叠的时间范围是一种迭代任务:例如,A = (0, 10), B = (20, 30), C = (10, 20)。C出现后,A、B、C三者应该合并。
UPD:
更新:
This is my ugly version of merging algorithm:
这是我丑陋的合并算法版本:
groups = {}
def in_range(val, begin, end):
return begin <= val <= end
global max_group_id
max_group_id = 1
def find_merged_group(begin, end):
global max_group_id
found_common_group = None
full_wraps = []
for (group_start, group_end), group in groups.iteritems():
begin_inclusion = in_range(begin, group_start, group_end)
end_inclusion = in_range(end, group_start, group_end)
full_inclusion = begin_inclusion and end_inclusion
full_wrap = not begin_inclusion and not end_inclusion and in_range(group_start, begin, end) and in_range(group_end, begin, end)
if full_inclusion:
groups[(begin, end)] = group
return group
if full_wrap:
full_wraps.append(group)
elif begin_inclusion or end_inclusion:
if not found_common_group:
found_common_group = group
else: # merge
for range, g in groups.iteritems():
if g == group:
groups[range] = found_common_group
if not found_common_group:
found_common_group = max_group_id
max_group_id += 1
groups[(begin, end)] = found_common_group
return found_common_group
def my_grouper(date_time):
return find_merged_group(date_time - 1, date_time + 1)
df['datetime'].apply(my_grouper) # first run to fill groups dict
grouped = df.groupby(df['datetime'].apply(my_grouper)) # this run is using already merged groups
回答by acushner
try this:
尝试这个:
- create a column
tsdiffthat has the diffs between consecutive times (usingshift) df['new_group'] = df.tsdiff > timedeltafillnaon thenew_groupgroupbythat column
- 创建一个
tsdiff在连续时间之间具有差异的列(使用shift) df['new_group'] = df.tsdiff > timedeltafillna在new_groupgroupby那一栏
this is just really rough pseudocode, but the solution's in there somewhere...
这只是非常粗略的伪代码,但解决方案就在某处......

