Python 将熊猫数据框列表连接在一起
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/32444138/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Concatenate a list of pandas dataframes together
提问by Whitebeard
I have a list of Pandas dataframes that I would like to combine into one Pandas dataframe. I am using Python 2.7.10 and Pandas 0.16.2
我有一个 Pandas 数据框的列表,我想将它们组合成一个 Pandas 数据框。我正在使用 Python 2.7.10 和 Pandas 0.16.2
I created the list of dataframes from:
我从以下位置创建了数据框列表:
import pandas as pd
dfs = []
sqlall = "select * from mytable"
for chunk in pd.read_sql_query(sqlall , cnxn, chunksize=10000):
dfs.append(chunk)
This returns a list of dataframes
这将返回数据帧列表
type(dfs[0])
Out[6]: pandas.core.frame.DataFrame
type(dfs)
Out[7]: list
len(dfs)
Out[8]: 408
Here is some sample data
这是一些示例数据
# sample dataframes
d1 = pd.DataFrame({'one' : [1., 2., 3., 4.], 'two' : [4., 3., 2., 1.]})
d2 = pd.DataFrame({'one' : [5., 6., 7., 8.], 'two' : [9., 10., 11., 12.]})
d3 = pd.DataFrame({'one' : [15., 16., 17., 18.], 'two' : [19., 10., 11., 12.]})
# list of dataframes
mydfs = [d1, d2, d3]
I would like to combine d1, d2, and d3into one pandas dataframe. Alternatively, a method of reading a large-ish table directly into a dataframe when using the chunksizeoption would be very helpful.
我想将d1,d2和组合d3成一个熊猫数据框。或者,在使用该chunksize选项时将大型表直接读入数据帧的方法将非常有帮助。
采纳答案by DeepSpace
Given that all the dataframes have the same columns, you can simply concatthem:
鉴于所有数据框都具有相同的列,您可以简单地使用concat它们:
import pandas as pd
df = pd.concat(list_of_dataframes)
回答by meyerson
If the dataframes DO NOT all have the same columns try the following:
如果数据框不都具有相同的列,请尝试以下操作:
df = pd.DataFrame.from_dict(map(dict,df_list))
回答by Jay Wong
You also can do it with functional programming:
你也可以用函数式编程来做到这一点:
reduce(lambda df1, df2: df1.merge(df2, "outer"), mydfs)
回答by Lelouch
concatalso works nicely with a list comprehension pulled using the "loc" command against an existing dataframe
concat也可以很好地与使用“loc”命令针对现有数据框拉出的列表理解一起使用
df = pd.read_csv('./data.csv') # ie; Dataframe pulled from csv file with a "userID" column
review_ids = ['1','2','3'] # ie; ID values to grab from DataFrame
# Gets rows in df where IDs match in the userID column and combines them
dfa = pd.concat([df.loc[df['userID'] == x] for x in review_ids])

![不在 matplotlib 中绘制“零”或将零更改为无 [Python]](/res/img/loading.gif)