Python 循环张量
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/43327668/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Looping over a tensor
提问by Mohamed Lakhal
I am trying to process a tensor of variable size, in a python way that would be something like:
我正在尝试以类似于以下内容的 python 方式处理可变大小的张量:
# X is of shape [m, n]
for x in X:
process(x)
I have tried to use tf.scan, the thing is that I want to process every sub-tensor, so I have tried to use a nested scan, but I was enable to do it, because tf.scanwork with the accumulator, if not found it will take the first entry of the elemsas initializer, which I don't want to do. As an example, suppose I want to add one to every element of my tensor (this is just an example), and I want to process it element by element. If I run the code bellow, I will only have one added to a sub-tensor, because scanconsider the first tensor as initializer, along with the first element of every sub-tensor.
我尝试使用tf.scan,问题是我想处理每个子张量,所以我尝试使用嵌套scan,但我可以这样做,因为tf.scan与累加器一起工作,如果not found 它将把elems的第一个条目作为初始值设定项,我不想这样做。例如,假设我想为张量的每个元素添加一个(这只是一个示例),并且我想逐个元素地处理它。如果我运行下面的代码,我只会将一个添加到子张量,因为scan将第一个张量视为初始化器,以及每个子张量的第一个元素。
import numpy as np
import tensorflow as tf
batch_x = np.random.randint(0, 10, size=(5, 10))
x = tf.placeholder(tf.float32, shape=[None, 10])
def inner_loop(x_in):
return tf.scan(lambda _, x_: x_ + 1, x_in)
outer_loop = tf.scan(lambda _, input_: inner_loop(input_), x, back_prop=True)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
rs = sess.run(outer_loop, feed_dict={x: batch_x})
Any suggestions ?
有什么建议 ?
采纳答案by Dmitriy Danevskiy
Most of tensorflow built-in functions could be applied elementwise. So you could just pass a tensor into a function. Like:
大多数 tensorflow 内置函数都可以按元素应用。因此,您可以将张量传递给函数。喜欢:
outer_loop = inner_loop(x)
However, if you have some function that could not be applied this way (it's really tempting to see that function), you could use map_fn
.
但是,如果您有一些无法以这种方式应用的功能(看到该功能真的很诱人),您可以使用map_fn
.
Say, your function simply adds 1 to every element of a tensor (or whatever):
比如说,您的函数只是将张量(或其他)的每个元素加 1:
inputs = tf.placeholder...
def my_elementwise_func(x):
return x + 1
def recursive_map(inputs):
if tf.shape(inputs).ndims > 0:
return tf.map_fn(recursive_map, inputs)
else:
return my_elementwise_func(inputs)
result = recursive_map(inputs)
回答by Dzjkb
To loop over a tensor you could try tf.unstack
要循环张量,您可以尝试tf.unstack
Unpacks the given dimension of a rank-R tensor into rank-(R-1) tensors.
将 rank-R 张量的给定维度解包为 rank-(R-1) 张量。
So adding 1 to each tensor would look something like:
所以给每个张量加 1 看起来像这样:
import tensorflow as tf
x = tf.placeholder(tf.float32, shape=(None, 10))
x_unpacked = tf.unstack(x) # defaults to axis 0, returns a list of tensors
processed = [] # this will be the list of processed tensors
for t in x_unpacked:
# do whatever
result_tensor = t + 1
processed.append(result_tensor)
output = tf.concat(processed, 0)
with tf.Session() as sess:
print(sess.run([output], feed_dict={x: np.zeros((5, 10))}))
Obviously you can further unpack each tensor from the list to process it, down to single elements. To avoid lots of nested unpacking though, you could maybe try flattening x with tf.reshape(x, [-1])
first, and then loop over it like
显然,您可以进一步从列表中解压缩每个张量以对其进行处理,直至分解为单个元素。不过,为了避免大量嵌套解包,您可以尝试tf.reshape(x, [-1])
先将x 展平,然后像这样循环
flattened_unpacked = tf.unstack(tf.reshape(x, [-1])
for elem in flattened_unpacked:
process(elem)
In this case elem
is a scalar.
在这种情况下elem
是一个标量。