Python 使用 NLTK 创建新语料库

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/4951751/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-18 18:19:09  来源:igfitidea点击:

Creating a new corpus with NLTK

pythonnlpnltkcorpus

提问by alvas

I reckoned that often the answer to my title is to go and read the documentations, but I ran through the NLTK bookbut it doesn't give the answer. I'm kind of new to Python.

我认为我的标题的答案通常是去阅读文档,但是我浏览了NLTK 书,但它没有给出答案。我对 Python 有点陌生。

I have a bunch of .txtfiles and I want to be able to use the corpus functions that NLTK provides for the corpus nltk_data.

我有一堆.txt文件,我希望能够使用 NLTK 为 corpus 提供的语料库函数nltk_data

I've tried PlaintextCorpusReaderbut I couldn't get further than:

我试过了,PlaintextCorpusReader但我无法超越:

>>>import nltk
>>>from nltk.corpus import PlaintextCorpusReader
>>>corpus_root = './'
>>>newcorpus = PlaintextCorpusReader(corpus_root, '.*')
>>>newcorpus.words()

How do I segment the newcorpussentences using punkt? I tried using the punkt functions but the punkt functions couldn't read PlaintextCorpusReaderclass?

如何newcorpus使用 punkt分割句子?我尝试使用 punkt 函数,但 punkt 函数无法读取PlaintextCorpusReader类?

Can you also lead me to how I can write the segmented data into text files?

您能否也指导我如何将分段数据写入文本文件?

采纳答案by Reiner Gerecke

I think the PlaintextCorpusReaderalready segments the input with a punkt tokenizer, at least if your input language is english.

我认为PlaintextCorpusReader已经使用 punkt 标记器对输入进行了分割,至少如果您的输入语言是英语。

PlainTextCorpusReader's constructor

PlainTextCorpusReader 的构造函数

def __init__(self, root, fileids,
             word_tokenizer=WordPunctTokenizer(),
             sent_tokenizer=nltk.data.LazyLoader(
                 'tokenizers/punkt/english.pickle'),
             para_block_reader=read_blankline_block,
             encoding='utf8'):

You can pass the reader a word and sentence tokenizer, but for the latter the default already is nltk.data.LazyLoader('tokenizers/punkt/english.pickle').

您可以向读者传递一个单词和句子标记器,但对于后者,默认值已经是nltk.data.LazyLoader('tokenizers/punkt/english.pickle').

For a single string, a tokenizer would be used as follows (explained here, see section 5 for punkt tokenizer).

对于单个字符串,分词器将按如下方式使用(解释here,请参阅第 5 节了解 punkt 分词器)。

>>> import nltk.data
>>> text = """
... Punkt knows that the periods in Mr. Smith and Johann S. Bach
... do not mark sentence boundaries.  And sometimes sentences
... can start with non-capitalized words.  i is a good variable
... name.
... """
>>> tokenizer = nltk.data.load('tokenizers/punkt/english.pickle')
>>> tokenizer.tokenize(text.strip())

回答by Krolique

 >>> import nltk
 >>> from nltk.corpus import PlaintextCorpusReader
 >>> corpus_root = './'
 >>> newcorpus = PlaintextCorpusReader(corpus_root, '.*')
 """
 if the ./ dir contains the file my_corpus.txt, then you 
 can view say all the words it by doing this 
 """
 >>> newcorpus.words('my_corpus.txt')

回答by alvas

After some years of figuring out how it works, here's the updated tutorial of

经过几年弄清楚它是如何工作的,这里是更新的教程

How to create an NLTK corpus with a directory of textfiles?

如何使用文本文件目录创建 NLTK 语料库?

The main idea is to make use of the nltk.corpus.readerpackage. In the case that you have a directory of textfiles in English, it's best to use the PlaintextCorpusReader.

主要思想是利用nltk.corpus.reader包。如果您有一个英文文本文件目录,最好使用PlaintextCorpusReader

If you have a directory that looks like this:

如果您有一个如下所示的目录:

newcorpus/
         file1.txt
         file2.txt
         ...

Simply use these lines of code and you can get a corpus:

只需使用这些代码行,您就可以获得一个语料库:

import os
from nltk.corpus.reader.plaintext import PlaintextCorpusReader

corpusdir = 'newcorpus/' # Directory of corpus.

newcorpus = PlaintextCorpusReader(corpusdir, '.*')

NOTE:that the PlaintextCorpusReaderwill use the default nltk.tokenize.sent_tokenize()and nltk.tokenize.word_tokenize()to split your texts into sentences and words and these functions are build for English, it may NOTwork for all languages.

注:PlaintextCorpusReader会使用默认的nltk.tokenize.sent_tokenize()nltk.tokenize.word_tokenize()你的文章分成句子和单词和这些功能都建立英语中,它可能不是所有的语言工作。

Here's the full code with creation of test textfiles and how to create a corpus with NLTK and how to access the corpus at different levels:

这是创建测试文本文件以及如何使用 NLTK 创建语料库以及如何在不同级别访问语料库的完整代码:

import os
from nltk.corpus.reader.plaintext import PlaintextCorpusReader

# Let's create a corpus with 2 texts in different textfile.
txt1 = """This is a foo bar sentence.\nAnd this is the first txtfile in the corpus."""
txt2 = """Are you a foo bar? Yes I am. Possibly, everyone is.\n"""
corpus = [txt1,txt2]

# Make new dir for the corpus.
corpusdir = 'newcorpus/'
if not os.path.isdir(corpusdir):
    os.mkdir(corpusdir)

# Output the files into the directory.
filename = 0
for text in corpus:
    filename+=1
    with open(corpusdir+str(filename)+'.txt','w') as fout:
        print>>fout, text

# Check that our corpus do exist and the files are correct.
assert os.path.isdir(corpusdir)
for infile, text in zip(sorted(os.listdir(corpusdir)),corpus):
    assert open(corpusdir+infile,'r').read().strip() == text.strip()


# Create a new corpus by specifying the parameters
# (1) directory of the new corpus
# (2) the fileids of the corpus
# NOTE: in this case the fileids are simply the filenames.
newcorpus = PlaintextCorpusReader('newcorpus/', '.*')

# Access each file in the corpus.
for infile in sorted(newcorpus.fileids()):
    print infile # The fileids of each file.
    with newcorpus.open(infile) as fin: # Opens the file.
        print fin.read().strip() # Prints the content of the file
print

# Access the plaintext; outputs pure string/basestring.
print newcorpus.raw().strip()
print 

# Access paragraphs in the corpus. (list of list of list of strings)
# NOTE: NLTK automatically calls nltk.tokenize.sent_tokenize and 
#       nltk.tokenize.word_tokenize.
#
# Each element in the outermost list is a paragraph, and
# Each paragraph contains sentence(s), and
# Each sentence contains token(s)
print newcorpus.paras()
print

# To access pargraphs of a specific fileid.
print newcorpus.paras(newcorpus.fileids()[0])

# Access sentences in the corpus. (list of list of strings)
# NOTE: That the texts are flattened into sentences that contains tokens.
print newcorpus.sents()
print

# To access sentences of a specific fileid.
print newcorpus.sents(newcorpus.fileids()[0])

# Access just tokens/words in the corpus. (list of strings)
print newcorpus.words()

# To access tokens of a specific fileid.
print newcorpus.words(newcorpus.fileids()[0])

Finally, to read a directory of texts and create an NLTK corpus in another languages, you must first ensure that you have a python-callable word tokenizationand sentence tokenizationmodules that takes string/basestring input and produces such output:

最后,要读取文本目录并以其他语言创建 NLTK 语料库,您必须首先确保您有一个 Python 可调用的单词标记化句子标记化模块,它们接受字符串/基本字符串输入并产生这样的输出:

>>> from nltk.tokenize import sent_tokenize, word_tokenize
>>> txt1 = """This is a foo bar sentence.\nAnd this is the first txtfile in the corpus."""
>>> sent_tokenize(txt1)
['This is a foo bar sentence.', 'And this is the first txtfile in the corpus.']
>>> word_tokenize(sent_tokenize(txt1)[0])
['This', 'is', 'a', 'foo', 'bar', 'sentence', '.']