database 万维网最大的站点在哪些数据库上运行?
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/1113381/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
What databases do the World Wide Web's biggest sites run on?
提问by niktech
This question is meant to serve as a list of databases and their configurations that the major web sites use and would be a great reference for anyone thinking of scaling their web site to the size of Twitter, Facebook or even Google.
这个问题旨在作为主要网站使用的数据库及其配置的列表,对于考虑将其网站扩展到 Twitter、Facebook 甚至 Google 大小的任何人来说,这将是一个很好的参考。
Please keep your answers to a minimum and be sure to cite any sources used.
请将您的答案保持在最低限度,并确保引用所使用的任何来源。
EDIT:
编辑:
Also, please boldboth the web-site name and the database for easier scanning.
此外,请将网站名称和数据库加粗,以便于扫描。
回答by niktech
- MySQL with MyRocks. Used to store user info and social activities such as likes, comments, and shares.
- Hive(Data warehouse for Hadoop, supports tables and a variant of SQL called hiveQL). Used for "simple summarization jobs, business intelligence and machine learning and many other applications"
- Cassandra(Multi-dimensional, distributed key-value store). Currently used for Facebook's private messaging.
- MySQL 与 MyRocks。用于存储用户信息和社交活动,例如喜欢、评论和分享。
- Hive(Hadoop 的数据仓库,支持表和称为 hiveQL 的 SQL 变体)。用于“简单的摘要作业、商业智能和机器学习以及许多其他应用程序”
- Cassandra(多维分布式键值存储)。目前用于 Facebook 的私人消息。
Currently running 610 (soon to be 1000) Hadoop nodes in a single cluster with Hive datastore. Both Hive and Cassandra have been open-sourced by Facebook.
当前在具有 Hive 数据存储的单个集群中运行 610 个(很快将成为 1000 个)Hadoop 节点。Hive 和 Cassandra 都由 Facebook 开源。
Facebook stats:
脸书统计:
- More than 200 million active users
- More than 100 million users log on to Facebook at least once each day
- More than 30 million users update their statuses at least once each day
- Average user has 120 friends on the site
- 超过 2 亿活跃用户
- 超过 1 亿用户每天至少登录一次 Facebook
- 超过 3000 万用户每天至少更新一次状态
- 平均用户在网站上有 120 个朋友
Sources:
资料来源:
- http://www.dbms2.com/2009/05/11/facebook-hadoop-and-hive/
- http://www.facebook.com/note.php?note_id=89508453919
- http://www.facebook.com/press/info.php?statistics
- http://hadoop.apache.org/hive/
- http://wiki.apache.org/hadoop/Hive/Design
- http://www.facebook.com/note.php?note_id=24413138919
- https://code.facebook.com/posts/190251048047090/myrocks-a-space-and-write-optimized-mysql-database
- http://www.dbms2.com/2009/05/11/facebook-hadoop-and-hive/
- http://www.facebook.com/note.php?note_id=89508453919
- http://www.facebook.com/press/info.php?statistics
- http://hadoop.apache.org/hive/
- http://wiki.apache.org/hadoop/Hive/Design
- http://www.facebook.com/note.php?note_id=24413138919
- https://code.facebook.com/posts/190251048047090/myrocks-a-space-and-write-optimized-mysql-database
回答by ACP
Stack Overflow- SQL Server.
堆栈溢出- SQL Server。
Jeff Atwood wrote a nice blog post on this
杰夫·阿特伍德 (Jeff Atwood) 在这方面写了一篇不错的博客文章
https://blog.stackoverflow.com/2008/09/what-was-stack-overflow-built-with/
https://blog.stackoverflow.com/2008/09/what-was-stack-overflow-built-with/
回答by niktech
- Oracle(Relational Database)
- MySQL(Relational Database)
- Oracle(关系数据库)
- MySQL(关系数据库)
Databases replicated on multiple servers for high availability. Each specific Service uses its own domain-specific DB.
数据库在多台服务器上复制以实现高可用性。每个特定的服务使用其自己的特定于域的数据库。
LinkedIn stats:
领英统计:
- 22 million members
- 4+ million unique visitors/month
- 40 million page views/day
- 2 million searches/day
- 2200万会员
- 4+ 百万独立访客/月
- 4000 万次页面浏览/天
- 200 万次搜索/天
Sources:
资料来源:
回答by Mohammed Nasman
Flickruses MySQL.
Flickr使用MySQL。
YouTubeuses MySQLbut they are moving to Google's BigTable.
YouTube使用MySQL,但他们正在转向 Google 的BigTable。
Myspaceuses SQL Server.
Myspace使用SQL Server。
Wikipediauses MySQL.
维基百科使用MySQL。
回答by Fredrik M?rk
- SQL Server(no surprise there)
- SQL Server(毫不奇怪)
Microsoft.com stats:
Microsoft.com 统计数据:
- 250 million unique visits/month.
- 70 million page views/day.
- 15,000 connections/second.
- Maintains an average of 35,000 concurrent connections to a total of 80 Web servers.
- 每月 2.5 亿次独立访问。
- 每天 7000 万页浏览量。
- 15,000 个连接/秒。
- 与总共 80 个 Web 服务器保持平均 35,000 个并发连接。
Sources:
资料来源:
回答by KahWee Teng
- PostgreSQL(modified) - A client can connect to any of the nodes in the cluster (or a policy restricted subset). A query flows from the client to the server it chose to connect with. The SQL compiler on that node compiles and optimizes the query on that single node (no parallelism).
- PostgreSQL(已修改)- 客户端可以连接到集群中的任何节点(或受策略限制的子集)。查询从客户端流向它选择连接的服务器。该节点上的 SQL 编译器编译并优化该单个节点上的查询(无并行性)。
Yahoo.com stats:
雅虎统计:
- 24 billion events a day
- 2-petabyte, claims largest database (Mar 2008)
- 每天 240 亿个事件
- 2 PB,声称最大的数据库(2008 年 3 月)
Source:
来源:
回答by niktech
- MySQL(Relational Database).
- Cassandra(Multi-dimensional, distributed key-value store). Twitter is just "beginning to use Cassandra at Twitter" (see second source).
- MySQL(关系数据库)。
- Cassandra(多维分布式键值存储)。Twitter 只是“开始在 Twitter 上使用 Cassandra”(参见第二个来源)。
In May 2008, Twitter had 1 MySQL instance for writes with multiple MySQL slave instances for reads.
2008 年 5 月,Twitter 有 1 个 MySQL 实例用于写入,多个 MySQL 从属实例用于读取。
Twitter stats:
推特统计:
- Total Users: 1+ million
- Total Active Users: 200,000 per week
- Total Twitter Messages: 3 million/day
- 5% of Twitter users account for 75% of all activity
- 72.5% of all users joining during the first five months of 2009
- 用户总数:1+ 百万
- 活跃用户总数:每周 200,000
- Twitter 消息总数:300 万/天
- 5% 的 Twitter 用户占所有活动的 75%
- 72.5% 的用户在 2009 年前五个月加入
Sources:
资料来源:
回答by niktech
Digg
掘客
- MySQL(Relational Database) for scaling out reads
- MemcacheDB(Key-Value Store) for scaling out writes
- 用于扩展读取的MySQL(关系数据库)
- MemcacheDB(键值存储)用于扩展写入
Both data stores are distributed across multiple servers.
两个数据存储都分布在多个服务器上。
Digg stats:
迪格统计:
- 30M users
- 26M uniques per month
- 2 billion requests a month
- 13,000 requests a second, peak at 27,000 requests a second.
- 3000万用户
- 每月 2600 万个独立用户
- 每月 20 亿次请求
- 每秒 13,000 个请求,峰值为每秒 27,000 个请求。
Sources:
资料来源:
回答by stribika
Googleuses BigTable: http://research.google.com/archive/bigtable.html
谷歌使用BigTable:http: //research.google.com/archive/bigtable.html
回答by duffymo
PlentyOfFish.comusing Microsoft SQL Server:
PlentyOfFish.com使用 Microsoft SQL Server:
https://blog.codinghorror.com/scaling-up-vs-scaling-out-hidden-costs/
https://blog.codinghorror.com/scaling-up-vs-scaling-out-hidden-costs/