Python 拆分大熊猫数据框
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/17315737/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Split a large pandas dataframe
提问by Nilani Algiriyage
I have a large dataframe with 423244 lines. I want to split this in to 4. I tried the following code which gave an error? ValueError: array split does not result in an equal division
我有一个包含 423244 行的大数据框。我想将其拆分为 4。我尝试了以下代码,但出现错误?ValueError: array split does not result in an equal division
for item in np.split(df, 4):
print item
How to split this dataframe in to 4 groups?
如何将此数据帧分成 4 组?
采纳答案by root
Use np.array_split
:
使用np.array_split
:
Docstring:
Split an array into multiple sub-arrays.
Please refer to the ``split`` documentation. The only difference
between these functions is that ``array_split`` allows
`indices_or_sections` to be an integer that does *not* equally
divide the axis.
In [1]: import pandas as pd
In [2]: df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar',
...: 'foo', 'bar', 'foo', 'foo'],
...: 'B' : ['one', 'one', 'two', 'three',
...: 'two', 'two', 'one', 'three'],
...: 'C' : randn(8), 'D' : randn(8)})
In [3]: print df
A B C D
0 foo one -0.174067 -0.608579
1 bar one -0.860386 -1.210518
2 foo two 0.614102 1.689837
3 bar three -0.284792 -1.071160
4 foo two 0.843610 0.803712
5 bar two -1.514722 0.870861
6 foo one 0.131529 -0.968151
7 foo three -1.002946 -0.257468
In [4]: import numpy as np
In [5]: np.array_split(df, 3)
Out[5]:
[ A B C D
0 foo one -0.174067 -0.608579
1 bar one -0.860386 -1.210518
2 foo two 0.614102 1.689837,
A B C D
3 bar three -0.284792 -1.071160
4 foo two 0.843610 0.803712
5 bar two -1.514722 0.870861,
A B C D
6 foo one 0.131529 -0.968151
7 foo three -1.002946 -0.257468]
回答by yemu
Caution:
警告:
np.array_split
doesn't work with numpy-1.9.0. I checked out: It works with 1.8.1.
np.array_split
不适用于 numpy-1.9.0。我签出:它适用于 1.8.1。
Error:
错误:
Dataframe has no 'size' attribute
数据框没有“大小”属性
回答by elixir
I wanted to do the same, and I had first problems with the split finction, then problems with installing pandas 0.15.2, so I went back to my old version, and wrote a little function that works very well. I hope this can help!
我想做同样的事情,我首先遇到了拆分功能的问题,然后是安装 pandas 0.15.2 的问题,所以我回到了我的旧版本,并编写了一个运行良好的小函数。我希望这能有所帮助!
# input - df: a Dataframe, chunkSize: the chunk size
# output - a list of DataFrame
# purpose - splits the DataFrame into smaller of max size chunkSize (last is smaller)
def splitDataFrameIntoSmaller(df, chunkSize = 10000):
listOfDf = list()
numberChunks = len(df) // chunkSize + 1
for i in range(numberChunks):
listOfDf.append(df[i*chunkSize:(i+1)*chunkSize])
return listOfDf
回答by Gilberto
Be aware that np.array_split(df, 3)
splits the dataframe into 3 sub-dataframes, while splitDataFrameIntoSmaller(df, chunkSize = 3)
splits the dataframe every chunkSize
rows.
请注意,np.array_split(df, 3)
将数据帧拆分为 3 个子数据帧,同时splitDataFrameIntoSmaller(df, chunkSize = 3)
将数据帧每chunkSize
行拆分。
Example:
例子:
df = pd.DataFrame([1,2,3,4,5,6,7,8,9,10,11], columns=['TEST'])
df_split = np.array_split(df, 3)
You get 3 sub-dataframes:
你得到 3 个子数据帧:
df_split[0] # 1, 2, 3, 4
df_split[1] # 5, 6, 7, 8
df_split[2] # 9, 10, 11
With:
和:
df_split2 = splitDataFrameIntoSmaller(df, chunkSize = 3)
You get 4 sub-dataframes:
你得到 4 个子数据帧:
df_split2[0] # 1, 2, 3
df_split2[1] # 4, 5, 6
df_split2[2] # 7, 8, 9
df_split2[3] # 10, 11
Hope I'm right, hope this is usefull.
希望我是对的,希望这有用。
回答by rumpel
You can use groupby
, assuming you have an integer enumerated index:
您可以使用groupby
,假设您有一个整数枚举索引:
import math
df = pd.DataFrame(dict(sample=np.arange(99)))
rows_per_subframe = math.ceil(len(df) / 4.)
subframes = [i[1] for i in df.groupby(np.arange(len(df))//rows_per_subframe)]
Note: groupby
returns a tuple in which the 2nd element is the dataframe, thus the slightly complicated extraction.
注意:groupby
返回一个元组,其中第二个元素是数据帧,因此提取稍微复杂一些。
>>> len(subframes), [len(i) for i in subframes]
(4, [25, 25, 25, 24])
回答by pratpor
I guess now we can use plain iloc
with range
for this.
我想现在我们可以使用plain iloc
withrange
了。
chunk_size = int(df.shape[0] / 4)
for start in range(0, df.shape[0], chunk_size):
df_subset = df.iloc[start:start + chunk_size]
process_data(df_subset)
....
回答by Martin Alexandersson
I also experienced np.array_split not working with Pandas DataFrame my solution was to only split the index of the DataFrame and then introduce a new column with the "group" label:
我也遇到过 np.array_split 不能使用 Pandas DataFrame 我的解决方案是只拆分 DataFrame 的索引,然后引入一个带有“group”标签的新列:
indexes = np.array_split(df.index,N, axis=0)
for i,index in enumerate(indexes):
df.loc[index,'group'] = i
This makes grouby operations very convenient for instance calculation of mean value of each group:
这使得 grouby 操作非常方便,例如计算每个组的平均值:
df.groupby(by='group').mean()