SQL 如何将数据从sql server导入mongodb?
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/25139266/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
how do i import data into mongodb from sql server?
提问by Deepak
how do i import data into mongodb from sql server?
如何将数据从sql server导入mongodb?
i have these tables in sql database with following columns
我在 sql 数据库中有这些表,其中包含以下列
States, Cities, CityAreas
州、城市、市区
States Id Name Cities Id Name StatesId CitiArea Id Name CityId
and I want data in mongoDb Like.
我想要像 mongoDb 一样的数据。
{ State:"Orissa", Cities:{ CitiName:"Phulbani", CitYArea:{ "Phulbani","Phulbani2","Pokali","Madira" } } }
is there any tools or do i need to write code for this transformation of data?
有什么工具或者我需要为这种数据转换编写代码吗?
回答by Asya Kamsky
There several possible ways to approach this from writing code in your favorite language of choice using appropriate APIs to select data, transform it and then insert it into MongoDB.
有几种可能的方法来解决这个问题,即使用您最喜欢的语言编写代码,使用适当的 API 来选择数据、转换数据,然后将其插入到 MongoDB 中。
You can also do it using SQL, MongoDB query language and the shell. One straightforward way is to select flat data via SQL, dump it into CSV file, import it into MongoDB and use aggregation framework to transform it into the format you want.
您也可以使用 SQL、MongoDB 查询语言和 shell 来完成。一种直接的方法是通过 SQL 选择平面数据,将其转储到 CSV 文件中,将其导入 MongoDB 并使用聚合框架将其转换为您想要的格式。
If you are lucky enough to use a database that supports arrays or other ways of grouping rows into single list types, then you can make a single select and turn it into JSON or MongoDB insert statement.
如果您有幸使用支持数组或其他将行分组为单个列表类型的方式的数据库,那么您可以进行单个选择并将其转换为 JSON 或 MongoDB 插入语句。
For these examples, I'm going to assume you want the format equivalent to a document for each city:
对于这些示例,我将假设您希望格式与每个城市的文档等效:
{
State:"Orissa",
City:{
Name:"Phulbani",
Area:[
"Phulbani","Phulbani2","Pokali","Madira"
]
}
}
Sample data in RDBMS:
RDBMS 中的示例数据:
asya=# select * from states;
id | name
----+---------------
1 | California
2 | New York
3 | Massachusetts
(3 rows)
asya=# select * from cities;
id | name | states_id
----+---------------+-----------
1 | Los Angeles | 1
2 | San Francisco | 1
3 | San Diego | 1
4 | New York | 2
5 | Brooklyn | 2
6 | Buffalo | 2
7 | Boston | 3
(7 rows)
asya=# select * from cityarea;
id | name | city_id
----+--------------------+---------
1 | Beacon Hill | 7
2 | Backbay | 7
3 | Brookline | 7
4 | Park Slope | 5
5 | Little Italy | 4
6 | SOHO | 4
7 | Harlem | 4
8 | West Village | 4
9 | SoMa | 2
10 | South Beach | 2
11 | Haight Ashbury | 2
12 | Cole Valley | 2
13 | Bunker Hill | 1
14 | Skid Row | 1
15 | Fashion District | 1
16 | Financial District | 1
(16 rows)
The easy way with arrays:
使用数组的简单方法:
SELECT 'db.cities.insert({ state:"' || states.name || '", city: { name: "' || cities.name || '", areas : [ ' || array_to_string(array_agg('"' || cityarea.name || '"'),',') || ']}});'
FROM states JOIN cities ON (states.id=cities.states_id) LEFT OUTER JOIN cityarea ON (cities.id=cityarea.city_id) GROUP BY states.name, cities.name;
gives you output that can go straight into MongoDB shell:
为您提供可以直接进入 MongoDB shell 的输出:
db.cities.insert({ state:"California", city: { name: "Los Angeles", areas : [ "Financial District","Fashion District","Skid Row","Bunker Hill"]}});
db.cities.insert({ state:"California", city: { name: "San Diego", areas : [ ]}});
db.cities.insert({ state:"California", city: { name: "San Francisco", areas : [ "Haight Ashbury","South Beach","SoMa","Cole Valley"]}});
db.cities.insert({ state:"Massachusetts", city: { name: "Boston", areas : [ "Beacon Hill","Brookline","Backbay"]}});
db.cities.insert({ state:"New York", city: { name: "Brooklyn", areas : [ "Park Slope"]}});
db.cities.insert({ state:"New York", city: { name: "Buffalo", areas : [ ]}});
db.cities.insert({ state:"New York", city: { name: "New York", areas : [ "Little Italy","West Village","Harlem","SOHO"]}});
The longer way if you don't have support for array or list types is to select joined data:
如果您不支持数组或列表类型,则更长的方法是选择连接数据:
asya=# SELECT states.name as state, cities.name as city, cityarea.name as area
FROM states JOIN cities ON (states.id=cities.states_id)
LEFT OUTER JOIN cityarea ON (cities.id=cityarea.city_id);
state | city | area
---------------+---------------+--------------------
California | Los Angeles | Financial District
California | Los Angeles | Fashion District
California | Los Angeles | Skid Row
California | Los Angeles | Bunker Hill
California | San Francisco | Cole Valley
California | San Francisco | Haight Ashbury
California | San Francisco | South Beach
California | San Francisco | SoMa
California | San Diego |
New York | New York | West Village
New York | New York | Harlem
New York | New York | SOHO
New York | New York | Little Italy
New York | Brooklyn | Park Slope
New York | Buffalo |
Massachusetts | Boston | Brookline
Massachusetts | Boston | Backbay
Massachusetts | Boston | Beacon Hill
(18 rows)
I used a left outer join on cityarea because in my sample data I had a city without any areas listed but I wanted to get all state, city pairs even if there was not an area listed for it.
我在 cityarea 上使用了左外连接,因为在我的示例数据中,我有一个没有列出任何区域的城市,但我想获得所有州、城市对,即使没有列出区域。
You can dump this out interactively or via a command line (use appropriate syntax for your RDBMS). I'll do it interactively:
您可以以交互方式或通过命令行(为您的 RDBMS 使用适当的语法)转储它。我会以交互方式进行:
asya=# \a
Output format is unaligned.
asya=# \f
Field separator is "|".
asya=# \f ,
Field separator is ",".
asya=# \t
Showing only tuples.
asya=# \o dump.txt
asya=# SELECT states.name as state, cities.name as city, cityarea.name as area
FROM states JOIN cities ON (states.id=cities.states_id)
LEFT OUTER JOIN cityarea ON (cities.id=cityarea.city_id);
asya=# \q
I now have a comma separated file with state, city and area as the three fields. I can load it into MongoDB via mongoimport
utility:
我现在有一个逗号分隔的文件,其中包含州、城市和地区作为三个字段。我可以通过mongoimport
实用程序将它加载到 MongoDB 中:
asya$ mongoimport -d sample -c tmpcities --type csv --fields state,city,area < dump.txt
connected to: 127.0.0.1
2014-08-05T07:41:36.744-0700 check 9 18
2014-08-05T07:41:36.744-0700 imported 18 objects
Now to transform to format I want, I use aggregation:
现在要转换为我想要的格式,我使用聚合:
mongo sample
MongoDB shell version: 2.6.4
connecting to: sample1
> db.tmpcities.aggregate(
{$group:{_id:"$city", state:{$first:"$state"}, areas:{$push:"$area"}}},
{$project:{state:1,_id:0,city:{name:"$_id", areas:"$areas"}}},
{$out:'cities'})
> db.cities.find({},{_id:0})
{ "_id" : "Boston", "state" : "Massachusetts", "areas" : [ "Brookline", "Backbay", "Beacon Hill" ] }
{ "_id" : "New York", "state" : "New York", "areas" : [ "West Village", "Harlem", "SOHO", "Little Italy" ] }
{ "_id" : "Buffalo", "state" : "New York", "areas" : [ "" ] }
{ "_id" : "Brooklyn", "state" : "New York", "areas" : [ "Park Slope" ] }
{ "_id" : "San Diego", "state" : "California", "areas" : [ "" ] }
{ "_id" : "San Francisco", "state" : "California", "areas" : [ "Cole Valley", "Haight Ashbury", "South Beach", "SoMa" ] }
{ "_id" : "Los Angeles", "state" : "California", "areas" : [ "Financial District", "Fashion District", "Skid Row", "Bunker Hill" ] }
回答by Ankur Choudhary
Try Mongify. It takes care of all the foreign key and referential integrity constraints which exist in SQL while migrating the data in MongoDB.
As per its documentation:
尝试Mongify。在迁移 MongoDB 中的数据时,它会处理 SQL 中存在的所有外键和参照完整性约束。
根据其文档:
Mongify helps you move your data without worrying about the IDs or foreign IDs. It allows you to embed data into documents, including polymorphic associations.
Mongify 可帮助您移动数据,而无需担心 ID 或外国 ID。它允许您将数据嵌入到文档中,包括多态关联。
Hope it helps.
希望能帮助到你。