如何在 Python 中创建数据帧数组

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/33907776/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-19 14:11:01  来源:igfitidea点击:

How to create an array of dataframes in Python

pythonarrayspandasdataframe

提问by Ana

I want to write a piece of code to create multiple arrays of dataFrames with their names in the format of word_0000, where the four digits are month and year. An example of what I'd like to do is to create the following dataframes:

我想编写一段代码来创建多个数据帧数组,其名称格式为 word_0000,其中四位数字是月份和年份。我想做的一个例子是创建以下数据帧:

df_0115, df_0215, df_0315, ... , df_1215
stat_0115, stat_0215, stat_0315, ... , stat_1215

采纳答案by Pedro M Duarte

I suggest that you create a dictionary to hold the DataFrames. That way you will be able to index them with a month-daykey:

我建议你创建一个字典来保存DataFrames. 这样你就可以用一个month-day键来索引它们:

import datetime as dt 
import numpy as np
import pandas as pd

dates_list = [dt.datetime(2015,11,i+1) for i in range(3)]
month_day_list = [d.strftime("%m%d") for d in dates_list]

dataframe_collection = {} 

for month_day in month_day_list:
    new_data = np.random.rand(3,3)
    dataframe_collection[month_day] = pd.DataFrame(new_data, columns=["one", "two", "three"])

for key in dataframe_collection.keys():
    print("\n" +"="*40)
    print(key)
    print("-"*40)
    print(dataframe_collection[key])

The code above prints out the following result:

上面的代码打印出以下结果:

========================================
1102
----------------------------------------
        one       two     three
0  0.896120  0.742575  0.394026
1  0.414110  0.511570  0.268268
2  0.132031  0.142552  0.074510

========================================
1103
----------------------------------------
        one       two     three
0  0.558303  0.259172  0.373240
1  0.726139  0.283530  0.378284
2  0.776430  0.243089  0.283144

========================================
1101
----------------------------------------
        one       two     three
0  0.849145  0.198028  0.067342
1  0.620820  0.115759  0.809420
2  0.997878  0.884883  0.104158

回答by mussabaheen

dfwill have all the CSV files you need. df[0]to access first one

df将拥有您需要的所有 CSV 文件。 df[0]访问第一个

df=[]    
files = glob.glob("*.csv")
    for a in files:
        df.append( pd.read_csv(a))