java 二叉搜索树实现和java
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/2052563/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
binary search tree impelementation and java
提问by Hellnar
I am trying to implement BST algorithm using Cormen's pseudo code yet having issue.
我正在尝试使用 Cormen 的伪代码实现 BST 算法,但仍有问题。
Here is my Code for Node:
这是我的节点代码:
public class Node {
Node left;
Node right;
int value;
Node(int value){
this.value = value;
this.left = null;
this.right = null;
}
}
and for the Bstree:
对于 Bstree:
public class Btree {
Node root;
Btree(){
this.root = null;
}
public static void inorderWalk(Node n){
if(n != null){
inorderWalk(n.left);
System.out.print(n.value + " ");
inorderWalk(n.right);
}
}
public static Node getParent(Btree t, Node n){
Node current = t.root;
Node parent = null;
while(true){
if (current == null)
return null;
if( current.value == n.value ){
break;
}
if (current.value > n.value){
parent = current;
current = current.left;
}
else{ //(current.value < n.value)
parent = current;
current = current.right;
}
}
return parent;
}
public static Node search(Node n,int key){
if(n == null || key == n.value ){
return n;
}
if(key < n.value){
return search(n.left,key);
}
else{
return search(n.right,key);
}
}
public static Node treeMinimum(Node x){
if(x == null){
return null;
}
while(x.left != null){
x = x.left;
}
return x;
}
public static Node treeMaximum(Node x){
if(x == null){
return null;
}
while(x.right != null){
x = x.right;
}
return x;
}
public static Node treeSuccessor(Btree t,Node x){
if (x.right == null){
return treeMinimum(x.right);
}
Node y = getParent(t,x);
while(y != null && x == y.right){
x = y;
y = getParent(t,y);
}
return y;
}
public static Btree insert(Btree t,Node z){
Node y = null;
Node x = t.root;
while(x != null){
y = x;
if(z.value < x.value)
x = x.left;
else
x = x.right;
}
Node tmp = getParent(t,z);
tmp = y;
if(y == null){
t.root = z;
}
else if(z.value < y.value)
y.left = z;
else
y.right = z;
return t;
}
public static Btree delete(Btree t,Node z){
Node y,x;
if (z.left == null || z.right == null)
y = z;
else
y = treeSuccessor(t,z);
if (y.left != null)
x = y.left;
else
x = y.right;
if (x != null){
Node tmp = getParent(t,x);
tmp = getParent(t,y);
}
if (getParent(t,y) == null ){
t.root = x;
}
else{
if( y == getParent(t,y).left ){
getParent(t,y).left = x;
}
else{
getParent(t,y).right = x;
}
}
if(y != z){
z.value = y.value;
}
return t;
}
public static void main(String[] args){
Btree test = new Btree();
Node n1 = new Node(6);
Node n2 = new Node(3);
Node n3 = new Node(9);
Node n4 = new Node(1);
Node n5 = new Node(16);
Node n6 = new Node(4);
Node n7 = new Node(2);
Node n8 = new Node(11);
Node n9 = new Node(13);
test = insert(test,n1);
test = insert(test,n2);
test = insert(test,n3);
test = insert(test,n4);
test = insert(test,n5);
test = insert(test,n6);
test = insert(test,n7);
test = insert(test,n8);
test = insert(test,n9);
inorderWalk(test.root);
System.out.println();
test = delete(test,n8);
inorderWalk(test.root);
System.out.println();
test = delete(test,n5);
inorderWalk(test.root);
System.out.println();
test = delete(test,n2);
inorderWalk(test.root);
System.out.println();
test = delete(test,n1);
inorderWalk(test.root);
}
}
The main problem is with the remove part, sometimes it is working as intended, sometimes removing wrongly and sometimes null pointer exception. What can be the issue ?
主要问题在于删除部分,有时它会按预期工作,有时会错误删除,有时会出现空指针异常。可能是什么问题?
Ps: this is NOT a homework
Ps:这不是作业
回答by JaakkoK
Some immediate problems with your code: your treeSuccessorstarts with
您的代码的一些直接问题:您treeSuccessor从
if (x.right == null){
return treeMinimum(x.right);
}
which should be if (x.right != null), of course.
if (x.right != null)当然,这应该是。
Your insertcode has the lines
你的insert代码有几行
Node tmp = getParent(t,z);
tmp = y;
where you assign to tmpand immediately assign to it again. It doesn't seem to me that you need these lines at all, since you don't use tmpfurther on. At this moment, you have ybeing the node to whose child zgets inserted, so just delete these lines.
您分配到的位置tmp并立即再次分配给它。在我看来,您根本不需要这些行,因为您不再使用这些行tmp了。此时,您y已成为其子节点z被插入的节点,因此只需删除这些行。
Again, in delete, you have the lines
再次,在delete,你有线条
if (x != null){
Node tmp = getParent(t,x);
tmp = getParent(t,y);
}
where you don't actually do anything, since tmpis not visible outside this snippet. And further on, in delete, you repeat the expression getParent(t,y), which can be an expensive operation, so you should compute it only once and assign it to some variable.
你实际上什么都不做,因为tmp在这个片段之外是不可见的。更进一步,在 in 中delete,您重复表达式getParent(t,y),这可能是一项昂贵的操作,因此您应该只计算一次并将其分配给某个变量。
But in general, your code, though it seems correct (probably apart from delete, which I did not understand completely but which looks suspicious), does not much resemble typical binary tree code. You don't really need the getParentand treeSuccessormethods to implement search, insert, and delete. The basic structure that you have for searchworks for the others too, with the following modifications:
但总的来说,您的代码虽然看起来是正确的(可能除了delete,我并不完全理解但看起来很可疑),但与典型的二叉树代码不太相似。你并不真的需要getParent和treeSuccessor方法来实现search,insert和delete。您拥有的基本结构也search适用于其他结构,并进行以下修改:
- with
insert, when you get to anulllink, instead of returningnull, insert the element to that point - with
delete, when you find the element, if it has only one (or no) child, replace it with that child, and if it has two children, replace it with either the maximum of the left child tree or the minimum of the right child tree
- with
insert,当你到达一个null链接时,不是返回null,而是将元素插入到那个点 - with
delete,当你找到该元素时,如果它只有一个(或没有)子元素,则将其替换为该子元素,如果它有两个子元素,则将其替换为左子树的最大值或右子树的最小值树
Both of these require in addition that you keep track of the parent node while descending into the tree, but that's the only modification you need to make to search. In particular, there is never any need to go upwards in the tree (which treeSuccessorwill do).
此外,这两者都要求您在下降到树中时跟踪父节点,但这是您需要对search. 特别是,永远不需要在树中向上走(这treeSuccessor会做)。
回答by helpermethod
First of all, your implementation got nothing to do with object orientation (except using objects). The insert and delete operations for example should operate ON the Tree.
首先,您的实现与面向对象无关(使用对象除外)。例如,插入和删除操作应该在树上操作。
Besides, I would recommend to implement the Node class as a static member of the Tree class.
此外,我建议将 Node 类实现为 Tree 类的静态成员。
public class Tree {
private Node root = null;
// remainder omitted
public boolean insert(int element) {
if (isEmpty()) {
root = new Node(element);
return true; // empty tree, Node could be inserted, return true
}
Node current = root; // start at root
Node parent; // the current Node's parent
do {
parent = current;
if (element < current.element) {
current = current.left; // go to left
} else if (element > current.element) {
current = current.right; // go to right
} else {
return false; // duplicates are NOT allowed, element could not be inserted -> return false
} while (current != null);
Node node = new Node(element);
if (element < current.element) {
parent.left = node;
} else {
parent.right = node;
}
return true; // node successfully inserted
}
public boolean isEmpty() {
return root == null;
}
private static class Node { // static member class
Node left = null;
Node right = null;
final int element;
Node(int element) {
this.element = element;
}
}
}
回答by Anon.
...what is up with your delete code? It doesn't make a lot of sense. I would consider rewriting it in a more logical way. Without the meaningless single-letter variable names. And add comments!
...你的删除代码怎么了?这没有多大意义。我会考虑以更合乎逻辑的方式重写它。没有无意义的单字母变量名。并添加评论!
One possible algorithm is:
一种可能的算法是:
Get the parent of the node to delete
Get the right-most node of the left subtree, or the leftmost node of the right subtree
Remove the node to delete and replace it with the node you found
Rebalance the tree
...or, if you want to hack up this stuff so it's right, I'd start looking at the
……或者,如果你想破解这些东西,那么它是对的,我会开始看
if (x != null){
Node tmp = getParent(t,x);
tmp = getParent(t,y);
}
part, because that's clearlywrong.
部分,因为那显然是错误的。
回答by Matti Lyra
I'll have to side with Anon and go for the rewrite. The null pointers come from your getParentfunction (which explicitly returns nulls along other things). So I would start there and fix the function(s) so that they return one thing and one thing only at the end of the function.
我将不得不站在 Anon 一边进行重写。空指针来自您的getParent函数(它显式返回空值以及其他内容)。所以我会从那里开始并修复函数,以便它们只在函数结束时返回一件事和一件事。
回答by Vpn_talent
Here is the complete Implementation of Binary Search Tree In Java insert,search,countNodes,traversal,delete,empty,maximum & minimum node,find parent node,print all leaf node, get level,get height, get depth,print left view, mirror view
这是Java中二叉搜索树的完整实现插入,搜索,计数节点,遍历,删除,空,最大和最小节点,查找父节点,打印所有叶节点,获取级别,获取高度,获取深度,打印左视图,镜像视图
import java.util.NoSuchElementException;
import java.util.Scanner;
import org.junit.experimental.max.MaxCore;
class BSTNode {
BSTNode left = null;
BSTNode rigth = null;
int data = 0;
public BSTNode() {
super();
}
public BSTNode(int data) {
this.left = null;
this.rigth = null;
this.data = data;
}
@Override
public String toString() {
return "BSTNode [left=" + left + ", rigth=" + rigth + ", data=" + data + "]";
}
}
class BinarySearchTree {
BSTNode root = null;
public BinarySearchTree() {
}
public void insert(int data) {
BSTNode node = new BSTNode(data);
if (root == null) {
root = node;
return;
}
BSTNode currentNode = root;
BSTNode parentNode = null;
while (true) {
parentNode = currentNode;
if (currentNode.data == data)
throw new IllegalArgumentException("Duplicates nodes note allowed in Binary Search Tree");
if (currentNode.data > data) {
currentNode = currentNode.left;
if (currentNode == null) {
parentNode.left = node;
return;
}
} else {
currentNode = currentNode.rigth;
if (currentNode == null) {
parentNode.rigth = node;
return;
}
}
}
}
public int countNodes() {
return countNodes(root);
}
private int countNodes(BSTNode node) {
if (node == null) {
return 0;
} else {
int count = 1;
count += countNodes(node.left);
count += countNodes(node.rigth);
return count;
}
}
public boolean searchNode(int data) {
if (empty())
return empty();
return searchNode(data, root);
}
public boolean searchNode(int data, BSTNode node) {
if (node != null) {
if (node.data == data)
return true;
else if (node.data > data)
return searchNode(data, node.left);
else if (node.data < data)
return searchNode(data, node.rigth);
}
return false;
}
public boolean delete(int data) {
if (empty())
throw new NoSuchElementException("Tree is Empty");
BSTNode currentNode = root;
BSTNode parentNode = root;
boolean isLeftChild = false;
while (currentNode.data != data) {
parentNode = currentNode;
if (currentNode.data > data) {
isLeftChild = true;
currentNode = currentNode.left;
} else if (currentNode.data < data) {
isLeftChild = false;
currentNode = currentNode.rigth;
}
if (currentNode == null)
return false;
}
// CASE 1: node with no child
if (currentNode.left == null && currentNode.rigth == null) {
if (currentNode == root)
root = null;
if (isLeftChild)
parentNode.left = null;
else
parentNode.rigth = null;
}
// CASE 2: if node with only one child
else if (currentNode.left != null && currentNode.rigth == null) {
if (root == currentNode) {
root = currentNode.left;
}
if (isLeftChild)
parentNode.left = currentNode.left;
else
parentNode.rigth = currentNode.left;
} else if (currentNode.rigth != null && currentNode.left == null) {
if (root == currentNode)
root = currentNode.rigth;
if (isLeftChild)
parentNode.left = currentNode.rigth;
else
parentNode.rigth = currentNode.rigth;
}
// CASE 3: node with two child
else if (currentNode.left != null && currentNode.rigth != null) {
// Now we have to find minimum element in rigth sub tree
// that is called successor
BSTNode successor = getSuccessor(currentNode);
if (currentNode == root)
root = successor;
if (isLeftChild)
parentNode.left = successor;
else
parentNode.rigth = successor;
successor.left = currentNode.left;
}
return true;
}
private BSTNode getSuccessor(BSTNode deleteNode) {
BSTNode successor = null;
BSTNode parentSuccessor = null;
BSTNode currentNode = deleteNode.left;
while (currentNode != null) {
parentSuccessor = successor;
successor = currentNode;
currentNode = currentNode.left;
}
if (successor != deleteNode.rigth) {
parentSuccessor.left = successor.left;
successor.rigth = deleteNode.rigth;
}
return successor;
}
public int nodeWithMinimumValue() {
return nodeWithMinimumValue(root);
}
private int nodeWithMinimumValue(BSTNode node) {
if (node.left != null)
return nodeWithMinimumValue(node.left);
return node.data;
}
public int nodewithMaximumValue() {
return nodewithMaximumValue(root);
}
private int nodewithMaximumValue(BSTNode node) {
if (node.rigth != null)
return nodewithMaximumValue(node.rigth);
return node.data;
}
public int parent(int data) {
return parent(root, data);
}
private int parent(BSTNode node, int data) {
if (empty())
throw new IllegalArgumentException("Empty");
if (root.data == data)
throw new IllegalArgumentException("No Parent node found");
BSTNode parent = null;
BSTNode current = node;
while (current.data != data) {
parent = current;
if (current.data > data)
current = current.left;
else
current = current.rigth;
if (current == null)
throw new IllegalArgumentException(data + " is not a node in tree");
}
return parent.data;
}
public int sibling(int data) {
return sibling(root, data);
}
private int sibling(BSTNode node, int data) {
if (empty())
throw new IllegalArgumentException("Empty");
if (root.data == data)
throw new IllegalArgumentException("No Parent node found");
BSTNode cureent = node;
BSTNode parent = null;
boolean isLeft = false;
while (cureent.data != data) {
parent = cureent;
if (cureent.data > data) {
cureent = cureent.left;
isLeft = true;
} else {
cureent = cureent.rigth;
isLeft = false;
}
if (cureent == null)
throw new IllegalArgumentException("No Parent node found");
}
if (isLeft) {
if (parent.rigth != null) {
return parent.rigth.data;
} else
throw new IllegalArgumentException("No Sibling is there");
} else {
if (parent.left != null)
return parent.left.data;
else
throw new IllegalArgumentException("No Sibling is there");
}
}
public void leafNodes() {
if (empty())
throw new IllegalArgumentException("Empty");
leafNode(root);
}
private void leafNode(BSTNode node) {
if (node == null)
return;
if (node.rigth == null && node.left == null)
System.out.print(node.data + " ");
leafNode(node.left);
leafNode(node.rigth);
}
public int level(int data) {
if (empty())
throw new IllegalArgumentException("Empty");
return level(root, data, 1);
}
private int level(BSTNode node, int data, int level) {
if (node == null)
return 0;
if (node.data == data)
return level;
int result = level(node.left, data, level + 1);
if (result != 0)
return result;
result = level(node.rigth, data, level + 1);
return result;
}
public int depth() {
return depth(root);
}
private int depth(BSTNode node) {
if (node == null)
return 0;
else
return 1 + Math.max(depth(node.left), depth(node.rigth));
}
public int height() {
return height(root);
}
private int height(BSTNode node) {
if (node == null)
return 0;
else
return 1 + Math.max(height(node.left), height(node.rigth));
}
public void leftView() {
leftView(root);
}
private void leftView(BSTNode node) {
if (node == null)
return;
int height = height(node);
for (int i = 1; i <= height; i++) {
printLeftView(node, i);
}
}
private boolean printLeftView(BSTNode node, int level) {
if (node == null)
return false;
if (level == 1) {
System.out.print(node.data + " ");
return true;
} else {
boolean left = printLeftView(node.left, level - 1);
if (left)
return true;
else
return printLeftView(node.rigth, level - 1);
}
}
public void mirroeView() {
BSTNode node = mirroeView(root);
preorder(node);
System.out.println();
inorder(node);
System.out.println();
postorder(node);
System.out.println();
}
private BSTNode mirroeView(BSTNode node) {
if (node == null || (node.left == null && node.rigth == null))
return node;
BSTNode temp = node.left;
node.left = node.rigth;
node.rigth = temp;
mirroeView(node.left);
mirroeView(node.rigth);
return node;
}
public void preorder() {
preorder(root);
}
private void preorder(BSTNode node) {
if (node != null) {
System.out.print(node.data + " ");
preorder(node.left);
preorder(node.rigth);
}
}
public void inorder() {
inorder(root);
}
private void inorder(BSTNode node) {
if (node != null) {
inorder(node.left);
System.out.print(node.data + " ");
inorder(node.rigth);
}
}
public void postorder() {
postorder(root);
}
private void postorder(BSTNode node) {
if (node != null) {
postorder(node.left);
postorder(node.rigth);
System.out.print(node.data + " ");
}
}
public boolean empty() {
return root == null;
}
}
public class BinarySearchTreeTest {
public static void main(String[] l) {
System.out.println("Weleome to Binary Search Tree");
Scanner scanner = new Scanner(System.in);
boolean yes = true;
BinarySearchTree tree = new BinarySearchTree();
do {
System.out.println("\n1. Insert");
System.out.println("2. Search Node");
System.out.println("3. Count Node");
System.out.println("4. Empty Status");
System.out.println("5. Delete Node");
System.out.println("6. Node with Minimum Value");
System.out.println("7. Node with Maximum Value");
System.out.println("8. Find Parent node");
System.out.println("9. Count no of links");
System.out.println("10. Get the sibling of any node");
System.out.println("11. Print all the leaf node");
System.out.println("12. Get the level of node");
System.out.println("13. Depth of the tree");
System.out.println("14. Height of Binary Tree");
System.out.println("15. Left View");
System.out.println("16. Mirror Image of Binary Tree");
System.out.println("Enter Your Choice :: ");
int choice = scanner.nextInt();
switch (choice) {
case 1:
try {
System.out.println("Enter Value");
tree.insert(scanner.nextInt());
} catch (Exception e) {
System.out.println(e.getMessage());
}
break;
case 2:
System.out.println("Enter the node");
System.out.println(tree.searchNode(scanner.nextInt()));
break;
case 3:
System.out.println(tree.countNodes());
break;
case 4:
System.out.println(tree.empty());
break;
case 5:
try {
System.out.println("Enter the node");
System.out.println(tree.delete(scanner.nextInt()));
} catch (Exception e) {
System.out.println(e.getMessage());
}
case 6:
try {
System.out.println(tree.nodeWithMinimumValue());
} catch (Exception e) {
System.out.println(e.getMessage());
}
break;
case 7:
try {
System.out.println(tree.nodewithMaximumValue());
} catch (Exception e) {
System.out.println(e.getMessage());
}
break;
case 8:
try {
System.out.println("Enter the node");
System.out.println(tree.parent(scanner.nextInt()));
} catch (Exception e) {
System.out.println(e.getMessage());
}
break;
case 9:
try {
System.out.println(tree.countNodes() - 1);
} catch (Exception e) {
System.out.println(e.getMessage());
}
break;
case 10:
try {
System.out.println("Enter the node");
System.out.println(tree.sibling(scanner.nextInt()));
} catch (Exception e) {
System.out.println(e.getMessage());
}
break;
case 11:
try {
tree.leafNodes();
} catch (Exception e) {
System.out.println(e.getMessage());
}
case 12:
try {
System.out.println("Enter the node");
System.out.println("Level is : " + tree.level(scanner.nextInt()));
} catch (Exception e) {
System.out.println(e.getMessage());
}
break;
case 13:
try {
System.out.println(tree.depth());
} catch (Exception e) {
System.out.println(e.getMessage());
}
break;
case 14:
try {
System.out.println(tree.height());
} catch (Exception e) {
System.out.println(e.getMessage());
}
break;
case 15:
try {
tree.leftView();
System.out.println();
} catch (Exception e) {
System.out.println(e.getMessage());
}
break;
case 16:
try {
tree.mirroeView();
} catch (Exception e) {
System.out.println(e.getMessage());
}
break;
default:
break;
}
tree.preorder();
System.out.println();
tree.inorder();
System.out.println();
tree.postorder();
} while (yes);
scanner.close();
}
}

