Python 转换时区熊猫数据框

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/22800079/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-19 01:43:57  来源:igfitidea点击:

Converting time zone pandas dataframe

pythonpandas

提问by user1234440

I have data:

我有数据:

                             Symbol      bid      ask
Timestamp                                            
2014-01-01 21:55:34.378000  EUR/USD  1.37622  1.37693
2014-01-01 21:55:40.410000  EUR/USD  1.37624  1.37698
2014-01-01 21:55:47.210000  EUR/USD  1.37619  1.37696
2014-01-01 21:55:57.963000  EUR/USD  1.37616  1.37696
2014-01-01 21:56:03.117000  EUR/USD  1.37616  1.37694

The timestamp is of GMT. Is there a way to convert that to Eastern?

时间戳为 GMT。有没有办法将其转换为东方?

Note when I do:

当我这样做时请注意:

data.index

I get output:

我得到输出:

<class 'pandas.tseries.index.DatetimeIndex'>
[2014-01-01 21:55:34.378000, ..., 2014-01-01 21:56:03.117000]
Length: 5, Freq: None, Timezone: None

采纳答案by unutbu

Localize the index (using tz_localize) to UTC (to make the Timestamps timezone-aware) and then convert to Eastern (using tz_convert):

将索引(使用tz_localize)本地化为 UTC(使时间戳时区感知),然后转换为东部(使用tz_convert):

import pytz
eastern = pytz.timezone('US/Eastern')
df.index = index.tz_localize(pytz.utc).tz_convert(eastern)


For example:

例如:

import pandas as pd
import pytz

index = pd.date_range('20140101 21:55', freq='15S', periods=5)
df = pd.DataFrame(1, index=index, columns=['X'])
print(df)
#                      X
# 2014-01-01 21:55:00  1
# 2014-01-01 21:55:15  1
# 2014-01-01 21:55:30  1
# 2014-01-01 21:55:45  1
# 2014-01-01 21:56:00  1

# [5 rows x 1 columns]
print(df.index)
# <class 'pandas.tseries.index.DatetimeIndex'>
# [2014-01-01 21:55:00, ..., 2014-01-01 21:56:00]
# Length: 5, Freq: 15S, Timezone: None

eastern = pytz.timezone('US/Eastern')
df.index = index.tz_localize(pytz.utc).tz_convert(eastern)
print(df)
#                            X
# 2014-01-01 16:55:00-05:00  1
# 2014-01-01 16:55:15-05:00  1
# 2014-01-01 16:55:30-05:00  1
# 2014-01-01 16:55:45-05:00  1
# 2014-01-01 16:56:00-05:00  1

# [5 rows x 1 columns]

print(df.index)
# <class 'pandas.tseries.index.DatetimeIndex'>
# [2014-01-01 16:55:00-05:00, ..., 2014-01-01 16:56:00-05:00]
# Length: 5, Freq: 15S, Timezone: US/Eastern

回答by wordsforthewise

Recently (I think in 2017) some datetime functionality has been added to pandas, and this is built-in. You can convert timezones with tz_convert(). If your data column/index is not timezone-aware, you will get a warning, and should first make the data timezone-aware with tz_localize.

最近(我认为在 2017 年)一些日期时间功能已添加到 Pandas,这是内置的。您可以使用tz_convert(). 如果您的数据列/索引不是时区感知的,您将收到警告,并且应首先使用tz_localize.

df = pd.DataFrame({'Symbol': ['EUR/USD'] * 5,
                  'bid': [1.37622, 1.37624, 1.37619, 1.37616, 1.37616],
                  'ask': [1.37693, 1.37698, 1.37696, 1.37696, 1.37694]})

df.index = pd.to_datetime(['2014-01-01 21:55:34.378000',
                          '2014-01-01 21:55:40.410000',
                          '2014-01-01 21:55:47.210000',
                          '2014-01-01 21:55:57.963000',
                          '2014-01-01 21:56:03.117000'])

df.index = df.index.tz_localize('GMT')
df.index = df.index.tz_convert('America/New_York')

This also works similarly for datetime columns:

这也适用于日期时间列:

df['column'] = df['column'].dt.tz_convert('America/New_York')

回答by Shivendra Rajawat

To convert EST time into Asia tz

将 EST 时间转换为 Asia tz

df.index = data.index.tz_localize('EST')
df.index = data.index.tz_convert('Asia/Kolkata')

Pandas has now inbuilt tz conversion ability.

Pandas 现在内置了 tz 转换功能。