java 在java中制作决策树的最佳学习算法?
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/1559851/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Best learning algorithm to make a decision tree in java?
提问by X-Blaster
I have a datasets with information like age, city, age of children, ... and a result (confirm, accept).
我有一个数据集,其中包含诸如年龄、城市、儿童年龄等信息以及结果(确认、接受)。
To help modelisation of "workflow", I want to create automatically a decision tree based on previous datasets.
为了帮助“工作流”建模,我想根据以前的数据集自动创建一个决策树。
I have take a look at http://en.wikipedia.org/wiki/Decision_tree_learningand I know that the problem is clearly not obvious.
我查看了http://en.wikipedia.org/wiki/Decision_tree_learning,我知道问题显然并不明显。
I just want to have advice on some algorithm or some libs on this subject what can help me in the contruction of a decision tree based on samples.
我只是想就这个主题的一些算法或一些库提出建议,什么可以帮助我基于样本构建决策树。
回答by Nate Kohl
You should take a look at Weka, a free Java-based supervised learning suite.
你应该看看Weka,一个免费的基于 Java 的监督学习套件。
After converting your data into Weka's simple text-based .arff format, you should be able to use the GUI or command-line interface to train and test a variety of different classifiers on that data, including:
将您的数据转换为 Weka 简单的基于文本的.arff 格式后,您应该能够使用 GUI 或命令行界面来训练和测试该数据的各种不同分类器,包括:
- decision trees
- neural networks
- rule-based systems
- support vector machines (SVMs)
- various types of regression
- 决策树
- 神经网络
- 基于规则的系统
- 支持向量机 (SVM)
- 各种类型的回归
Experimenting with this interface should allow you to easily try different classifiers and training parameters to determine which ones perform the best on your data.
尝试使用此界面应该可以让您轻松尝试不同的分类器和训练参数,以确定哪些分类器和训练参数对您的数据表现最佳。
You can also use an API to integrate Weka into your own source code.
回答by Marcin
If you want to compare performance of different types of decision trees from Weka, see benchmark results collected in TunedIT.org:
如果您想比较 Weka 中不同类型决策树的性能,请参阅 TunedIT.org 中收集的基准测试结果:
http://tunedit.org/results?d=UCI&a=Weka*tree.
http://tunedit.org/results?d=UCI&a=Weka*tree。
Play with drop-down lists and name patterns of algorithms/datasets to choose which results should be presented.
使用下拉列表和算法/数据集的名称模式来选择应显示哪些结果。

