php 如何在预先存在的 SQL 数据库之上使用弹性搜索?
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/17856457/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
How to use Elastic Search on top of a pre-existing SQL Database?
提问by Miles M.
I've been reading through a lot of good documentation about how to implement Elastic Search on a website with javascript or PHP.
我已经阅读了很多关于如何使用 javascript 或 PHP 在网站上实现弹性搜索的优秀文档。
Very good introduction to ES.
很好的ES 介绍。
Very complete documentation hereand here.
A whole CRUD.
整个CRUD。
Elastic search with PHP: here, here, and here.
So the reason why I'm giving you those URLs is to understand how to use one or many of those great documentations when having a pre-existing SQL DB.
所以我给你这些 URL 的原因是为了了解在拥有一个预先存在的 SQL 数据库时如何使用这些伟大的文档中的一个或多个。
I'm missing the point somewhere: As they said Elasticsearch will create its own indexes and DB with MongoDB, I don't understand how can I use my (gigantic) database using SQL? Let say I have a MySQL DB, and I would like to use Elasticsearch to make my research faster and to propose the user pre-made queries, how do I do that? How does ES works over/along MySQL? How to transfer this gigantic set of Datas (over 8GB) into ES DB in order to be fully efficient at the beginning?
我在某处遗漏了一点:正如他们所说的 Elasticsearch 将使用 MongoDB 创建自己的索引和数据库,我不明白如何使用 SQL 使用我的(巨大的)数据库?假设我有一个 MySQL 数据库,我想使用 Elasticsearch 使我的研究更快,并向用户提出预制查询,我该怎么做?ES 如何在 MySQL 上/与 MySQL 一起工作?如何将这组庞大的数据(超过 8GB)传输到 ES DB 中才能在开始时完全高效?
Many Thanks
非常感谢
采纳答案by Tim
I am using jdbc-riverw/ mysql. It is very fast. You can configure them to continually poll data, or use one-time (one-shot strategy) imports.
我正在使用带有 mysql 的jdbc-river。它非常快。您可以将它们配置为持续轮询数据,或使用一次性(一次性策略)导入。
e.g.
例如
curl -xPUT http://es-server:9200/_river/my_river/_meta -d '
{
"type" : "jdbc",
"jdbc" : {
"strategy" : "simple",
"poll" : "5s",
"scale" : 0,
"autocommit" : false,
"fetchsize" : 10,
"max_rows" : 0,
"max_retries" : 3,
"max_retries_wait" : "10s",
"driver" : "com.mysql.jdbc.Driver",
"url" : "jdbc:mysql://mysql-server:3306/mydb",
"user" : "root",
"password" : "password*",
"sql" : "select c.id, c.brandCode, c.companyCode from category c"
},
"index" : {
"index" : "mainIndex",
"type" : "category",
"bulk_size" : 30,
"max_bulk_requests" : 100,
"index_settings" : null,
"type_mapping" : null,
"versioning" : false,
"acknowledge" : false
}
}'
回答by Tony O'Hagan
If you need a more performant and scalable solution to the polling offered by jdbc-river, I recommend that you watch this presentation that explains how to perform incremental syncing from SQL Server into Elastic Search:
如果您需要针对 jdbc-river 提供的轮询的更高性能和可扩展性的解决方案,我建议您观看此演示文稿,该演示文稿解释了如何执行从 SQL Server 到 Elastic Search 的增量同步:
The principles discussed in the video also apply for other RDBMS -> NoSQL replication applications.
视频中讨论的原则也适用于其他 RDBMS -> NoSQL 复制应用程序。