pandas 绘制时间序列散点图

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/43459786/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-14 03:24:52  来源:igfitidea点击:

Plot timeseries scatterplot

pythonpandasmatplotlibtime-seriesscatter-plot

提问by ComplexData

I have below data -

我有以下数据 -

ProductName    01/01/2016    01/07/2016    01/14/2017
ABC              12             34            51
XYZ               9             76            12
PQR              12             23             7
DEF              54              4            34

I want to plot a timeseries scatterplot showing total sales on each day. I have created the following function -

我想绘制一个时间序列散点图,显示每天的总销售额。我创建了以下功能 -

def scatterplot(x_data, y_data, x_label, y_label, title):
_, ax = plt.subplots()
ax.scatter(x_data, y_data, s = 30, color = '#539caf', alpha = 0.75)

ax.set_title(title)
ax.set_xlabel(x_label)
ax.set_ylabel(y_label)

I am confused about how to call this function to get my desired result. The plot should show date on the x-axis and total sales on the y.

我对如何调用这个函数来获得我想要的结果感到困惑。该图应在 x 轴上显示日期,在 y 轴上显示总销售额。

回答by ImportanceOfBeingErnest

If your data is in a pandas DataFrame, you may take the column headers as x values and the sum of the data along the vertical axis (i.e. the total number of products sold that day) as y values.

如果您的数据在 Pandas DataFrame 中,您可以将列标题作为 x 值,将纵轴上的数据总和(即当天售出的产品总数)作为 y 值。

import pandas as pd
import matplotlib.pyplot as plt

# replicate Data from question in DataFrame
v = [[12,34,51], [9,76,12], [12,23,7], [54,4,34]]
df = pd.DataFrame(v, columns=["01/01/2016","01/07/2016","01/14/2017"], 
                      index=["ABC", "XYZ", "PQR", "DEF"])
print(df)


def scatterplot(x_data, y_data, x_label, y_label, title):
    fig, ax = plt.subplots()
    ax.scatter(x_data, y_data, s = 30, color = '#539caf', alpha = 0.75)

    ax.set_title(title)
    ax.set_xlabel(x_label)
    ax.set_ylabel(y_label)
    fig.autofmt_xdate()

#use column headers as x values
x = pd.to_datetime(df.columns, format='%m/%d/%Y')
# sum all values from DataFrame along vertical axis
y = df.values.sum(axis=0)    
scatterplot(x,y, "x_label", "y_label", "title")

plt.show()

enter image description here

在此处输入图片说明