SQL Pyspark:基于多种条件过滤数据框
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/49301373/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Pyspark: Filter dataframe based on multiple conditions
提问by Sidhom
I want to filter dataframe according to the following conditions firstly (d<5) and secondly (value of col2 not equal its counterpart in col4 if value in col1 equal its counterpart in col3).
我想首先根据以下条件过滤数据帧(d<5),其次(如果 col1 中的值等于 col3 中的对应值,则 col2 的值不等于 col4 中的对应值)。
If the original dataframe DF
is as follows:
如果原始数据框DF
如下:
+----+----+----+----+---+
|col1|col2|col3|col4| d|
+----+----+----+----+---+
| A| xx| D| vv| 4|
| C| xxx| D| vv| 10|
| A| x| A| xx| 3|
| E| xxx| B| vv| 3|
| E| xxx| F| vvv| 6|
| F|xxxx| F| vvv| 4|
| G| xxx| G| xxx| 4|
| G| xxx| G| xx| 4|
| G| xxx| G| xxx| 12|
| B|xxxx| B| xx| 13|
+----+----+----+----+---+
The desired Dataframe is:
所需的数据框是:
+----+----+----+----+---+
|col1|col2|col3|col4| d|
+----+----+----+----+---+
| A| xx| D| vv| 4|
| A| x| A| xx| 3|
| E| xxx| B| vv| 3|
| F|xxxx| F| vvv| 4|
| G| xxx| G| xx| 4|
+----+----+----+----+---+
Code I have tried that did not work as expected:
我试过的代码没有按预期工作:
cols=[('A','xx','D','vv',4),('C','xxx','D','vv',10),('A','x','A','xx',3),('E','xxx','B','vv',3),('E','xxx','F','vvv',6),('F','xxxx','F','vvv',4),('G','xxx','G','xxx',4),('G','xxx','G','xx',4),('G','xxx','G','xxx',12),('B','xxxx','B','xx',13)]
df=spark.createDataFrame(cols,['col1','col2','col3','col4','d'])
df.filter((df.d<5)& (df.col2!=df.col4) & (df.col1==df.col3)).show()
+----+----+----+----+---+
|col1|col2|col3|col4| d|
+----+----+----+----+---+
| A| x| A| xx| 3|
| F|xxxx| F| vvv| 4|
| G| xxx| G| xx| 4|
+----+----+----+----+---+
What should I do to achieve the desired result?
我应该怎么做才能达到预期的结果?
回答by pault
Your logic condition is wrong. IIUC, what you want is:
你的逻辑条件是错误的。IIUC,你想要的是:
import pyspark.sql.functions as f
df.filter((f.col('d')<5))\
.filter(
((f.col('col1') != f.col('col3')) |
(f.col('col2') != f.col('col4')) & (f.col('col1') == f.col('col3')))
)\
.show()
I broke the filter()
step into 2 calls for readability, but you could equivalently do it in one line.
filter()
为了提高可读性,我将这一步分成了 2 个调用,但您可以等效地在一行中完成。
Output:
输出:
+----+----+----+----+---+
|col1|col2|col3|col4| d|
+----+----+----+----+---+
| A| xx| D| vv| 4|
| A| x| A| xx| 3|
| E| xxx| B| vv| 3|
| F|xxxx| F| vvv| 4|
| G| xxx| G| xx| 4|
+----+----+----+----+---+
回答by ohke
You can also write like below (without pyspark.sql.functions
):
你也可以像下面这样写(没有pyspark.sql.functions
):
df.filter('d<5 and (col1 <> col3 or (col1 = col3 and col2 <> col4))').show()
Result:
结果:
+----+----+----+----+---+
|col1|col2|col3|col4| d|
+----+----+----+----+---+
| A| xx| D| vv| 4|
| A| x| A| xx| 3|
| E| xxx| B| vv| 3|
| F|xxxx| F| vvv| 4|
| G| xxx| G| xx| 4|
+----+----+----+----+---+
回答by hamze_z3
faster way (without pyspark.sql.functions
)
更快的方式(没有pyspark.sql.functions
)
df.filter((df.d<5)&((df.col1 != df.col3) |
(df.col2 != df.col4) &
(df.col1 ==df.col3)))\
.show()