scala 从分区的镶木地板文件中读取 DataFrame
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/33650421/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Reading DataFrame from partitioned parquet file
提问by WoodChopper
How to read partitioned parquet with condition as dataframe,
如何以条件为数据帧读取分区镶木地板,
this works fine,
这工作正常,
val dataframe = sqlContext.read.parquet("file:///home/msoproj/dev_data/dev_output/aln/partitions/data=jDD/year=2015/month=10/day=25/*")
Partition is there for day=1 to day=30is it possible to read something like(day = 5 to 6)or day=5,day=6,
分区是为了day=1 to day=30是否可以读取类似(day = 5 to 6)或的内容day=5,day=6,
val dataframe = sqlContext.read.parquet("file:///home/msoproj/dev_data/dev_output/aln/partitions/data=jDD/year=2015/month=10/day=??/*")
If I put *it gives me all 30 days data and it too big.
如果我把*它给了我所有 30 天的数据,它太大了。
回答by Glennie Helles Sindholt
sqlContext.read.parquetcan take multiple paths as input. If you want just day=5and day=6, you can simply add two paths like:
sqlContext.read.parquet可以将多个路径作为输入。如果你只想要day=5and day=6,你可以简单地添加两条路径,如:
val dataframe = sqlContext
.read.parquet("file:///your/path/data=jDD/year=2015/month=10/day=5/",
"file:///your/path/data=jDD/year=2015/month=10/day=6/")
If you have folders under day=X, like say country=XX, countrywill automatically be added as a column in the dataframe.
如果你下有文件夹day=X,就像说country=XX,country会自动添加为一列dataframe。
EDIT: As of Spark 1.6 one needs to provide a "basepath"-option in order for Spark to generate columns automatically. In Spark 1.6.x the above would have to be re-written like this to create a dataframe with the columns "data", "year", "month" and "day":
编辑:从 Spark 1.6 开始,需要提供一个“basepath”选项,以便 Spark 自动生成列。在 Spark 1.6.x 中,必须像这样重写上面的内容以创建一个包含“data”、“year”、“month”和“day”列的数据框:
val dataframe = sqlContext
.read
.option("basePath", "file:///your/path/")
.parquet("file:///your/path/data=jDD/year=2015/month=10/day=5/",
"file:///your/path/data=jDD/year=2015/month=10/day=6/")
回答by Neelesh Sambhajiche
If you want to read for multiple days, for example day = 5and day = 6and want to mention the range in the path itself, wildcards can be used:
如果你想读多天,例如day = 5和day = 6,想提路径本身的范围内,可以使用通配符:
val dataframe = sqlContext
.read
.parquet("file:///your/path/data=jDD/year=2015/month=10/day={5,6}/*")
Wildcards can also be used to specify a range of days:
通配符也可用于指定天数范围:
val dataframe = sqlContext
.read
.parquet("file:///your/path/data=jDD/year=2015/month=10/day=[5-10]/*")
This matches all days from 5 to 10.
这匹配从 5 到 10 的所有天。
回答by Kiran N
you need to provide mergeSchema = trueoption. like mentioned below (this is from 1.6.0):
你需要提供mergeSchema = true选项。如下所述(来自 1.6.0):
val dataframe = sqlContext.read.option("mergeSchema", "true").parquet("file:///your/path/data=jDD")
This will read all the parquet files into dataframe and also creates columns year, month and day in the dataframe data.
这会将所有镶木地板文件读入数据框,并在数据框数据中创建列年、月和日。
Ref: https://spark.apache.org/docs/1.6.0/sql-programming-guide.html#schema-merging
参考:https: //spark.apache.org/docs/1.6.0/sql-programming-guide.html#schema-merging

