Python Pandas:过滤多个条件
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/48978550/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Pandas: Filtering multiple conditions
提问by bclayman
I'm trying to do boolean indexing with a couple conditions using Pandas. My original DataFrame is called df
. If I perform the below, I get the expected result:
我正在尝试使用 Pandas 在几个条件下进行布尔索引。我原来的 DataFrame 被称为df
. 如果我执行以下操作,我会得到预期的结果:
temp = df[df["bin"] == 3]
temp = temp[(~temp["Def"])]
temp = temp[temp["days since"] > 7]
temp.head()
However, if I do this (which I think should be equivalent), I get no rows back:
但是,如果我这样做(我认为这应该是等效的),则不会返回任何行:
temp2 = df[df["bin"] == 3]
temp2 = temp2[~temp2["Def"] & temp2["days since"] > 7]
temp2.head()
Any idea what accounts for the difference?
知道造成这种差异的原因是什么吗?
回答by jezrael
Use ()
because operator precedence:
使用()
因为运算符优先级:
temp2 = df[~df["Def"] & (df["days since"] > 7) & (df["bin"] == 3)]
Alternatively, create conditions on separate rows:
或者,在单独的行上创建条件:
cond1 = df["bin"] == 3
cond2 = df["days since"] > 7
cond3 = ~df["Def"]
temp2 = df[cond1 & cond2 & cond3]
Sample:
样品:
df = pd.DataFrame({'Def':[True] *2 + [False]*4,
'days since':[7,8,9,14,2,13],
'bin':[1,3,5,3,3,3]})
print (df)
Def bin days since
0 True 1 7
1 True 3 8
2 False 5 9
3 False 3 14
4 False 3 2
5 False 3 13
temp2 = df[~df["Def"] & (df["days since"] > 7) & (df["bin"] == 3)]
print (temp2)
Def bin days since
3 False 3 14
5 False 3 13