python pandas,DF.groupby().agg(),agg()中的列引用
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/15322632/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
python pandas, DF.groupby().agg(), column reference in agg()
提问by jf328
On a concrete problem, say I have a DataFrame DF
在一个具体的问题上,假设我有一个 DataFrame DF
word tag count
0 a S 30
1 the S 20
2 a T 60
3 an T 5
4 the T 10
I want to find, for every "word", the "tag" that has the most "count". So the return would be something like
我想为每个“单词”找到“计数”最多的“标签”。所以回报会是这样的
word tag count
1 the S 20
2 a T 60
3 an T 5
I don't care about the count column or if the order/Index is original or messed up. Returning a dictionary {'the' : 'S', ...} is just fine.
我不关心计数列,也不关心订单/索引是原始的还是混乱的。返回字典 { 'the' : 'S', ...} 就好了。
I hope I can do
我希望我能做到
DF.groupby(['word']).agg(lambda x: x['tag'][ x['count'].argmax() ] )
but it doesn't work. I can't access column information.
但它不起作用。我无法访问列信息。
More abstractly, what does the functionin agg(function) see as its argument?
更抽象地说,agg( function)中的函数将什么视为其参数?
btw, is .agg() the same as .aggregate() ?
顺便说一句, .agg() 和 .aggregate() 是一样的吗?
Many thanks.
非常感谢。
采纳答案by unutbu
aggis the same as aggregate. It's callable is passed the columns (Seriesobjects) of the DataFrame, one at a time.
agg与 相同aggregate。一次一个地传递 的列(Series对象)是可调用的DataFrame。
You could use idxmaxto collect the index labels of the rows with the maximum
count:
您可以使用idxmax最大计数来收集行的索引标签:
idx = df.groupby('word')['count'].idxmax()
print(idx)
yields
产量
word
a 2
an 3
the 1
Name: count
and then use locto select those rows in the wordand tagcolumns:
然后用于loc选择word和tag列中的那些行:
print(df.loc[idx, ['word', 'tag']])
yields
产量
word tag
2 a T
3 an T
1 the S
Note that idxmaxreturns index labels. df.loccan be used to select rows
by label. But if the index is not unique -- that is, if there are rows with duplicate index labels -- then df.locwill select all rowswith the labels listed in idx. So be careful that df.index.is_uniqueis Trueif you use idxmaxwith df.loc
请注意,idxmax返回索引标签。df.loc可用于按标签选择行。但是如果索引不是唯一的——也就是说,如果有带有重复索引标签的行——那么df.loc将选择所有带有列在中的标签的行idx。所以,要小心,df.index.is_unique是True如果你使用idxmax与df.loc
Alternative, you could use apply. apply's callable is passed a sub-DataFrame which gives you access to all the columns:
或者,您可以使用apply. apply的 callable 传递了一个子 DataFrame ,它使您可以访问所有列:
import pandas as pd
df = pd.DataFrame({'word':'a the a an the'.split(),
'tag': list('SSTTT'),
'count': [30, 20, 60, 5, 10]})
print(df.groupby('word').apply(lambda subf: subf['tag'][subf['count'].idxmax()]))
yields
产量
word
a T
an T
the S
Using idxmaxand locis typically faster than apply, especially for large DataFrames. Using IPython's %timeit:
使用idxmax和loc通常比 快apply,尤其是对于大型数据帧。使用 IPython 的 %timeit:
N = 10000
df = pd.DataFrame({'word':'a the a an the'.split()*N,
'tag': list('SSTTT')*N,
'count': [30, 20, 60, 5, 10]*N})
def using_apply(df):
return (df.groupby('word').apply(lambda subf: subf['tag'][subf['count'].idxmax()]))
def using_idxmax_loc(df):
idx = df.groupby('word')['count'].idxmax()
return df.loc[idx, ['word', 'tag']]
In [22]: %timeit using_apply(df)
100 loops, best of 3: 7.68 ms per loop
In [23]: %timeit using_idxmax_loc(df)
100 loops, best of 3: 5.43 ms per loop
If you want a dictionary mapping words to tags, then you could use set_indexand to_dictlike this:
如果你想要一个将单词映射到标签的字典,那么你可以使用set_index并to_dict像这样:
In [36]: df2 = df.loc[idx, ['word', 'tag']].set_index('word')
In [37]: df2
Out[37]:
tag
word
a T
an T
the S
In [38]: df2.to_dict()['tag']
Out[38]: {'a': 'T', 'an': 'T', 'the': 'S'}
回答by Jeff
Here's a simple way to figure out what is being passed (the unutbu) solution then 'applies'!
这是一种简单的方法来确定正在传递的内容(unutbu)解决方案然后“应用”!
In [33]: def f(x):
....: print type(x)
....: print x
....:
In [34]: df.groupby('word').apply(f)
<class 'pandas.core.frame.DataFrame'>
word tag count
0 a S 30
2 a T 60
<class 'pandas.core.frame.DataFrame'>
word tag count
0 a S 30
2 a T 60
<class 'pandas.core.frame.DataFrame'>
word tag count
3 an T 5
<class 'pandas.core.frame.DataFrame'>
word tag count
1 the S 20
4 the T 10
your function just operates (in this case) on a sub-section of the frame with the grouped variable all having the same value (in this cas 'word'), if you are passing a function, then you have to deal with the aggregation of potentially non-string columns; standard functions, like 'sum' do this for you
你的函数只是在框架的一个子部分上运行(在这种情况下),分组变量都具有相同的值(在这个 cas 'word' 中),如果你正在传递一个函数,那么你必须处理聚合潜在的非字符串列;标准函数,比如“sum”为你做这件事
Automatically does NOT aggregate on the string columns
自动不会在字符串列上聚合
In [41]: df.groupby('word').sum()
Out[41]:
count
word
a 90
an 5
the 30
You ARE aggregating on all columns
您正在聚合所有列
In [42]: df.groupby('word').apply(lambda x: x.sum())
Out[42]:
word tag count
word
a aa ST 90
an an T 5
the thethe ST 30
You can do pretty much anything within the function
你可以在函数内做几乎任何事情
In [43]: df.groupby('word').apply(lambda x: x['count'].sum())
Out[43]:
word
a 90
an 5
the 30

