Python 删除numpy数组的重复行

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/31097247/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-19 09:29:07  来源:igfitidea点击:

Remove duplicate rows of a numpy array

pythonnumpy

提问by thunder

How can I remove duplicate rows of a 2 dimensional numpyarray?

如何删除二维numpy数组的重复行?

data = np.array([[1,8,3,3,4],
                 [1,8,9,9,4],
                 [1,8,3,3,4]])

The answer should be as follows:

答案应该如下:

ans = array([[1,8,3,3,4],
             [1,8,9,9,4]])

If there are two rows that are the same, then I would like to remove one "duplicate" row.

如果有两行相同,那么我想删除一个“重复”行。

采纳答案by ThePredator

You can use numpy unique. Since you want the unique rows, we need to put them into tuples:

您可以使用numpy unique. 由于您想要唯一的行,我们需要将它们放入元组中:

import numpy as np

data = np.array([[1,8,3,3,4],
                 [1,8,9,9,4],
                 [1,8,3,3,4]])

just applying np.uniqueto the dataarray will result in this:

只是应用np.uniquedata阵列会导致这样的:

>>> uniques
array([1, 3, 4, 8, 9])

prints out the unique elements in the list. So putting them into tuples results in:

打印出列表中的唯一元素。因此,将它们放入元组会导致:

new_array = [tuple(row) for row in data]
uniques = np.unique(new_array)

which prints:

打印:

>>> uniques
array([[1, 8, 3, 3, 4],
       [1, 8, 9, 9, 4]])

回答by omerbp

A simple solution can be:

一个简单的解决方案可以是:

import numpy as np
def unique_rows(a):
    a = np.ascontiguousarray(a)
    unique_a = np.unique(a.view([('', a.dtype)]*a.shape[1]))
    return unique_a.view(a.dtype).reshape((unique_a.shape[0], a.shape[1]))

data = np.array([[1,8,3,3,4],
                 [1,8,9,9,4],
                 [1,8,3,3,4]])


print unique_rows(data)
#prints:
[[1 8 3 3 4]
 [1 8 9 9 4]]

You can check thisfor many more solutions for this problem

您可以检查这个对于这个问题有更多的解决方案

回答by Divakar

One approach with lex-sorting-

一种方法lex-sorting-

# Perform lex sort and get sorted data
sorted_idx = np.lexsort(data.T)
sorted_data =  data[sorted_idx,:]

# Get unique row mask
row_mask = np.append([True],np.any(np.diff(sorted_data,axis=0),1))

# Get unique rows
out = sorted_data[row_mask]

Sample run -

样品运行 -

In [199]: data
Out[199]: 
array([[1, 8, 3, 3, 4],
       [1, 8, 9, 9, 4],
       [1, 8, 3, 3, 4],
       [1, 8, 3, 3, 4],
       [1, 8, 0, 3, 4],
       [1, 8, 9, 9, 4]])

In [200]: sorted_idx = np.lexsort(data.T)
     ...: sorted_data =  data[sorted_idx,:]
     ...: row_mask = np.append([True],np.any(np.diff(sorted_data,axis=0),1))
     ...: out = sorted_data[row_mask]
     ...: 

In [201]: out
Out[201]: 
array([[1, 8, 0, 3, 4],
       [1, 8, 3, 3, 4],
       [1, 8, 9, 9, 4]])

Runtime tests -

运行时测试 -

This section times all approaches proposed in the solutions presented thus far.

本节对迄今为止提出的解决方案中提出的所有方法进行计时。

In [34]: data = np.random.randint(0,10,(10000,10))

In [35]: def tuple_based(data):
    ...:     new_array = [tuple(row) for row in data]
    ...:     return np.unique(new_array)
    ...: 
    ...: def lexsort_based(data):                 
    ...:     sorted_data =  data[np.lexsort(data.T),:]
    ...:     row_mask = np.append([True],np.any(np.diff(sorted_data,axis=0),1))
    ...:     return sorted_data[row_mask]
    ...: 
    ...: def unique_based(a):
    ...:     a = np.ascontiguousarray(a)
    ...:     unique_a = np.unique(a.view([('', a.dtype)]*a.shape[1]))
    ...:     return unique_a.view(a.dtype).reshape((unique_a.shape[0], a.shape[1]))
    ...: 

In [36]: %timeit tuple_based(data)
10 loops, best of 3: 63.1 ms per loop

In [37]: %timeit lexsort_based(data)
100 loops, best of 3: 8.92 ms per loop

In [38]: %timeit unique_based(data)
10 loops, best of 3: 29.1 ms per loop