Python 根据数据类型获取熊猫数据框列的列表

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/22470690/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-19 01:00:28  来源:igfitidea点击:

get list of pandas dataframe columns based on data type

pythonpandas

提问by yoshiserry

If I have a dataframe with the following columns:

如果我有一个包含以下列的数据框:

1. NAME                                     object
2. On_Time                                      object
3. On_Budget                                    object
4. %actual_hr                                  float64
5. Baseline Start Date                  datetime64[ns]
6. Forecast Start Date                  datetime64[ns] 

I would like to be able to say: here is a dataframe, give me a list of the columns which are of type Object or of type DateTime?

我想说的是:这是一个数据框,给我一个 Object 类型或 DateTime 类型的列的列表?

I have a function which converts numbers (Float64) to two decimal places, and I would like to use this list of dataframe columns, of a particular type, and run it through this function to convert them all to 2dp.

我有一个将数字 (Float64) 转换为两位小数的函数,我想使用此特定类型的数据帧列列表,并通过此函数运行它以将它们全部转换为 2dp。

Maybe:

也许:

For c in col_list: if c.dtype = "Something"
list[]
List.append(c)?

采纳答案by DSM

If you want a list of columns of a certain type, you can use groupby:

如果您想要某种类型的列列表,您可以使用groupby

>>> df = pd.DataFrame([[1, 2.3456, 'c', 'd', 78]], columns=list("ABCDE"))
>>> df
   A       B  C  D   E
0  1  2.3456  c  d  78

[1 rows x 5 columns]
>>> df.dtypes
A      int64
B    float64
C     object
D     object
E      int64
dtype: object
>>> g = df.columns.to_series().groupby(df.dtypes).groups
>>> g
{dtype('int64'): ['A', 'E'], dtype('float64'): ['B'], dtype('O'): ['C', 'D']}
>>> {k.name: v for k, v in g.items()}
{'object': ['C', 'D'], 'int64': ['A', 'E'], 'float64': ['B']}

回答by Andy Hayden

You can use boolean mask on the dtypes attribute:

您可以在 dtypes 属性上使用布尔掩码:

In [11]: df = pd.DataFrame([[1, 2.3456, 'c']])

In [12]: df.dtypes
Out[12]: 
0      int64
1    float64
2     object
dtype: object

In [13]: msk = df.dtypes == np.float64  # or object, etc.

In [14]: msk
Out[14]: 
0    False
1     True
2    False
dtype: bool

You can look at just those columns with the desired dtype:

您可以仅查看具有所需 dtype 的那些列:

In [15]: df.loc[:, msk]
Out[15]: 
        1
0  2.3456

Now you can use round (or whatever) and assign it back:

现在您可以使用 round(或其他)并将其分配回:

In [16]: np.round(df.loc[:, msk], 2)
Out[16]: 
      1
0  2.35

In [17]: df.loc[:, msk] = np.round(df.loc[:, msk], 2)

In [18]: df
Out[18]: 
   0     1  2
0  1  2.35  c

回答by qmorgan

As of pandas v0.14.1, you can utilize select_dtypes()to select columns by dtype

从 pandas v0.14.1 开始,您可以利用 dtypeselect_dtypes()选择列

In [2]: df = pd.DataFrame({'NAME': list('abcdef'),
    'On_Time': [True, False] * 3,
    'On_Budget': [False, True] * 3})

In [3]: df.select_dtypes(include=['bool'])
Out[3]:
  On_Budget On_Time
0     False    True
1      True   False
2     False    True
3      True   False
4     False    True
5      True   False

In [4]: mylist = list(df.select_dtypes(include=['bool']).columns)

In [5]: mylist
Out[5]: ['On_Budget', 'On_Time']

回答by qmorgan

If you want a list of only the object columns you could do:

如果您只需要对象列的列表,您可以执行以下操作:

non_numerics = [x for x in df.columns \
                if not (df[x].dtype == np.float64 \
                        or df[x].dtype == np.int64)]

and then if you want to get another list of only the numerics:

然后如果你想得到另一个只有数字的列表:

numerics = [x for x in df.columns if x not in non_numerics]

回答by Ashish Sahu

Using dtypewill give you desired column's data type:

使用dtype将为您提供所需列的数据类型:

dataframe['column1'].dtype


if you want to know data types of all the column at once, you can use plural of dtypeas dtypes:

如果你想一次知道所有列的数据类型,你可以使用复数dtype作为dtypes

dataframe.dtypes

回答by Tanmoy

list(df.select_dtypes(['object']).columns)

This should do the trick

这应该可以解决问题

回答by Koo

use df.info(verbose=True)where dfis a pandas datafarme, by default verbose=False

默认情况下使用df.info(verbose=True)哪里df是熊猫数据场verbose=False

回答by MLKing

The most direct way to get a list of columns of certain dtype e.g. 'object':

获取某些 dtype 的列列表的最直接方法,例如“对象”:

df.select_dtypes(include='object').columns

For example:

例如:

>>df = pd.DataFrame([[1, 2.3456, 'c', 'd', 78]], columns=list("ABCDE"))
>>df.dtypes

A      int64
B    float64
C     object
D     object
E      int64
dtype: object

To get all 'object' dtype columns:

要获取所有“对象”dtype 列:

>>df.select_dtypes(include='object').columns

Index(['C', 'D'], dtype='object')

For just the list:

仅用于列表:

>>list(df.select_dtypes(include='object').columns)

['C', 'D']   

回答by geekidharsh

I came up with this three liner.

我想出了这三个班轮

Essentially, here's what it does:

本质上,这是它的作用:

  1. Fetch the column names and their respective data types.
  2. I am optionally outputting it to a csv.
  1. 获取列名及其各自的数据类型。
  2. 我可以选择将其输出到 csv。


inp = pd.read_csv('filename.csv') # read input. Add read_csv arguments as needed
columns = pd.DataFrame({'column_names': inp.columns, 'datatypes': inp.dtypes})
columns.to_csv(inp+'columns_list.csv', encoding='utf-8') # encoding is optional

This made my life much easier in trying to generate schemason the fly. Hope this helps

这让我在尝试动态生成模式时变得更加轻松。希望这可以帮助

回答by itthrill

for yoshiserry;

为yoshiserry;

def col_types(x,pd):
    dtypes=x.dtypes
    dtypes_col=dtypes.index
    dtypes_type=dtypes.value
    column_types=dict(zip(dtypes_col,dtypes_type))
    return column_types