在 Python 中计算 Pearson 相关性和显着性

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/3949226/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-18 13:29:40  来源:igfitidea点击:

Calculating Pearson correlation and significance in Python

pythonnumpystatisticsscipy

提问by ariel

I am looking for a function that takes as input two lists, and returns the Pearson correlation, and the significance of the correlation.

我正在寻找一个函数,它将两个列表作为输入,并返回Pearson 相关性以及相关性的重要性。

回答by Sacha

You can have a look at scipy.stats:

你可以看看scipy.stats

from pydoc import help
from scipy.stats.stats import pearsonr
help(pearsonr)

>>>
Help on function pearsonr in module scipy.stats.stats:

pearsonr(x, y)
 Calculates a Pearson correlation coefficient and the p-value for testing
 non-correlation.

 The Pearson correlation coefficient measures the linear relationship
 between two datasets. Strictly speaking, Pearson's correlation requires
 that each dataset be normally distributed. Like other correlation
 coefficients, this one varies between -1 and +1 with 0 implying no
 correlation. Correlations of -1 or +1 imply an exact linear
 relationship. Positive correlations imply that as x increases, so does
 y. Negative correlations imply that as x increases, y decreases.

 The p-value roughly indicates the probability of an uncorrelated system
 producing datasets that have a Pearson correlation at least as extreme
 as the one computed from these datasets. The p-values are not entirely
 reliable but are probably reasonable for datasets larger than 500 or so.

 Parameters
 ----------
 x : 1D array
 y : 1D array the same length as x

 Returns
 -------
 (Pearson's correlation coefficient,
  2-tailed p-value)

 References
 ----------
 http://www.statsoft.com/textbook/glosp.html#Pearson%20Correlation

回答by Jeff Hammerbacher

If you don't feel like installing scipy, I've used this quick hack, slightly modified from Programming Collective Intelligence:

如果你不想安装 scipy,我已经使用了这个快速的 hack,从Programming Collective Intelligence稍微修改了一下:

(Edited for correctness.)

(为了正确而编辑。)

from itertools import imap

def pearsonr(x, y):
  # Assume len(x) == len(y)
  n = len(x)
  sum_x = float(sum(x))
  sum_y = float(sum(y))
  sum_x_sq = sum(map(lambda x: pow(x, 2), x))
  sum_y_sq = sum(map(lambda x: pow(x, 2), y))
  psum = sum(imap(lambda x, y: x * y, x, y))
  num = psum - (sum_x * sum_y/n)
  den = pow((sum_x_sq - pow(sum_x, 2) / n) * (sum_y_sq - pow(sum_y, 2) / n), 0.5)
  if den == 0: return 0
  return num / den

回答by dfrankow

The following code is a straight-up interpretation of the definition:

以下代码是对定义的直接解释:

import math

def average(x):
    assert len(x) > 0
    return float(sum(x)) / len(x)

def pearson_def(x, y):
    assert len(x) == len(y)
    n = len(x)
    assert n > 0
    avg_x = average(x)
    avg_y = average(y)
    diffprod = 0
    xdiff2 = 0
    ydiff2 = 0
    for idx in range(n):
        xdiff = x[idx] - avg_x
        ydiff = y[idx] - avg_y
        diffprod += xdiff * ydiff
        xdiff2 += xdiff * xdiff
        ydiff2 += ydiff * ydiff

    return diffprod / math.sqrt(xdiff2 * ydiff2)

Test:

测试:

print pearson_def([1,2,3], [1,5,7])

returns

回报

0.981980506062

This agrees with Excel, this calculator, SciPy(also NumPy), which return 0.981980506 and 0.9819805060619657, and 0.98198050606196574, respectively.

这与 Excel、这个计算器SciPy(也是NumPy)一致,它们分别返回 0.981980506 和 0.9819805060619657 和 0.98198050606196574。

R:

[R

> cor( c(1,2,3), c(1,5,7))
[1] 0.9819805

EDIT: Fixed a bug pointed out by a commenter.

编辑:修复了评论者指出的错误。

回答by Joshua Richardson

You may wonder how to interpret your probability in the context of looking for a correlation in a particular direction (negative or positive correlation.) Here is a function I wrote to help with that. It might even be right!

您可能想知道如何在寻找特定方向的相关性(负相关或正相关)的上下文中解释您的概率。这是我编写的一个函数来帮助解决这个问题。甚至可能是对的!

It's based on info I gleaned from http://www.vassarstats.net/rsig.htmland http://en.wikipedia.org/wiki/Student%27s_t_distribution, thanks to other answers posted here.

它基于我从http://www.vassarstats.net/rsig.htmlhttp://en.wikipedia.org/wiki/Student%27s_t_distribution收集的信息,感谢这里发布的其他答案。

# Given (possibly random) variables, X and Y, and a correlation direction,
# returns:
#  (r, p),
# where r is the Pearson correlation coefficient, and p is the probability
# that there is no correlation in the given direction.
#
# direction:
#  if positive, p is the probability that there is no positive correlation in
#    the population sampled by X and Y
#  if negative, p is the probability that there is no negative correlation
#  if 0, p is the probability that there is no correlation in either direction
def probabilityNotCorrelated(X, Y, direction=0):
    x = len(X)
    if x != len(Y):
        raise ValueError("variables not same len: " + str(x) + ", and " + \
                         str(len(Y)))
    if x < 6:
        raise ValueError("must have at least 6 samples, but have " + str(x))
    (corr, prb_2_tail) = stats.pearsonr(X, Y)

    if not direction:
        return (corr, prb_2_tail)

    prb_1_tail = prb_2_tail / 2
    if corr * direction > 0:
        return (corr, prb_1_tail)

    return (corr, 1 - prb_1_tail)

回答by winerd

The Pearson correlation can be calculated with numpy's corrcoef.

可以使用 numpy's 计算 Pearson 相关性corrcoef

import numpy
numpy.corrcoef(list1, list2)[0, 1]

回答by compski

Rather than rely on numpy/scipy, I think my answer should be the easiest to code and understand the stepsin calculating the Pearson Correlation Coefficient (PCC) .

与其依赖 numpy/scipy,我认为我的答案应该是最容易编码和理解计算 Pearson 相关系数 (PCC) 的步骤。

import math

# calculates the mean
def mean(x):
    sum = 0.0
    for i in x:
         sum += i
    return sum / len(x) 

# calculates the sample standard deviation
def sampleStandardDeviation(x):
    sumv = 0.0
    for i in x:
         sumv += (i - mean(x))**2
    return math.sqrt(sumv/(len(x)-1))

# calculates the PCC using both the 2 functions above
def pearson(x,y):
    scorex = []
    scorey = []

    for i in x: 
        scorex.append((i - mean(x))/sampleStandardDeviation(x)) 

    for j in y:
        scorey.append((j - mean(y))/sampleStandardDeviation(y))

# multiplies both lists together into 1 list (hence zip) and sums the whole list   
    return (sum([i*j for i,j in zip(scorex,scorey)]))/(len(x)-1)

The significanceof PCC is basically to show you how strongly correlatedthe two variables/lists are. It is important to note that the PCC value ranges from -1 to 1. A value between 0 to 1 denotes a positive correlation. Value of 0 = highest variation (no correlation whatsoever). A value between -1 to 0 denotes a negative correlation.

PCC的意义基本上是向您展示这两个变量/列表的相关性有多。重要的是要注意 PCC 值的范围从 -1 到 1。0 到 1 之间的值表示正相关。0 值 = 最高变异(没有任何相关性)。-1 到 0 之间的值表示负相关。

回答by Vipul Sharma

Here is an implementation for pearson correlation based on sparse vector. The vectors here are expressed as a list of tuples expressed as (index, value). The two sparse vectors can be of different length but over all vector size will have to be same. This is useful for text mining applications where the vector size is extremely large due to most features being bag of words and hence calculations are usually performed using sparse vectors.

这是基于稀疏向量的皮尔逊相关的实现。此处的向量表示为表示为 (index, value) 的元组列表。两个稀疏向量的长度可以不同,但​​整个向量的大小必须相同。这对于向量大小非常大的文本挖掘应用程序非常有用,因为大多数特征是词袋,因此通常使用稀疏向量执行计算。

def get_pearson_corelation(self, first_feature_vector=[], second_feature_vector=[], length_of_featureset=0):
    indexed_feature_dict = {}
    if first_feature_vector == [] or second_feature_vector == [] or length_of_featureset == 0:
        raise ValueError("Empty feature vectors or zero length of featureset in get_pearson_corelation")

    sum_a = sum(value for index, value in first_feature_vector)
    sum_b = sum(value for index, value in second_feature_vector)

    avg_a = float(sum_a) / length_of_featureset
    avg_b = float(sum_b) / length_of_featureset

    mean_sq_error_a = sqrt((sum((value - avg_a) ** 2 for index, value in first_feature_vector)) + ((
        length_of_featureset - len(first_feature_vector)) * ((0 - avg_a) ** 2)))
    mean_sq_error_b = sqrt((sum((value - avg_b) ** 2 for index, value in second_feature_vector)) + ((
        length_of_featureset - len(second_feature_vector)) * ((0 - avg_b) ** 2)))

    covariance_a_b = 0

    #calculate covariance for the sparse vectors
    for tuple in first_feature_vector:
        if len(tuple) != 2:
            raise ValueError("Invalid feature frequency tuple in featureVector: %s") % (tuple,)
        indexed_feature_dict[tuple[0]] = tuple[1]
    count_of_features = 0
    for tuple in second_feature_vector:
        count_of_features += 1
        if len(tuple) != 2:
            raise ValueError("Invalid feature frequency tuple in featureVector: %s") % (tuple,)
        if tuple[0] in indexed_feature_dict:
            covariance_a_b += ((indexed_feature_dict[tuple[0]] - avg_a) * (tuple[1] - avg_b))
            del (indexed_feature_dict[tuple[0]])
        else:
            covariance_a_b += (0 - avg_a) * (tuple[1] - avg_b)

    for index in indexed_feature_dict:
        count_of_features += 1
        covariance_a_b += (indexed_feature_dict[index] - avg_a) * (0 - avg_b)

    #adjust covariance with rest of vector with 0 value
    covariance_a_b += (length_of_featureset - count_of_features) * -avg_a * -avg_b

    if mean_sq_error_a == 0 or mean_sq_error_b == 0:
        return -1
    else:
        return float(covariance_a_b) / (mean_sq_error_a * mean_sq_error_b)

Unit tests:

单元测试:

def test_get_get_pearson_corelation(self):
    vector_a = [(1, 1), (2, 2), (3, 3)]
    vector_b = [(1, 1), (2, 5), (3, 7)]
    self.assertAlmostEquals(self.sim_calculator.get_pearson_corelation(vector_a, vector_b, 3), 0.981980506062, 3, None, None)

    vector_a = [(1, 1), (2, 2), (3, 3)]
    vector_b = [(1, 1), (2, 5), (3, 7), (4, 14)]
    self.assertAlmostEquals(self.sim_calculator.get_pearson_corelation(vector_a, vector_b, 5), -0.0137089240555, 3, None, None)

回答by Martin F Thomsen

Hmm, many of these responses have long and hard to read code...

嗯,这些响应中的许多都有很长且难以阅读的代码......

I'd suggest using numpy with its nifty features when working with arrays:

我建议在处理数组时使用 numpy 及其漂亮的功能:

import numpy as np
def pcc(X, Y):
   ''' Compute Pearson Correlation Coefficient. '''
   # Normalise X and Y
   X -= X.mean(0)
   Y -= Y.mean(0)
   # Standardise X and Y
   X /= X.std(0)
   Y /= Y.std(0)
   # Compute mean product
   return np.mean(X*Y)

# Using it on a random example
from random import random
X = np.array([random() for x in xrange(100)])
Y = np.array([random() for x in xrange(100)])
pcc(X, Y)

回答by Mojtaba Khodadadi

This is a implementation of Pearson Correlation function using numpy:

这是使用 numpy 的 Pearson 相关函数的实现:


def corr(data1, data2):
    "data1 & data2 should be numpy arrays."
    mean1 = data1.mean() 
    mean2 = data2.mean()
    std1 = data1.std()
    std2 = data2.std()

#     corr = ((data1-mean1)*(data2-mean2)).mean()/(std1*std2)
    corr = ((data1*data2).mean()-mean1*mean2)/(std1*std2)
    return corr

回答by Turtles Are Cute

Here's a variant on mkh's answer that runs much faster than it, and scipy.stats.pearsonr, using numba.

这是 mkh 答案的一个变体,它运行得比它快得多,还有 scipy.stats.pearsonr,使用 numba。

import numba

@numba.jit
def corr(data1, data2):
    M = data1.size

    sum1 = 0.
    sum2 = 0.
    for i in range(M):
        sum1 += data1[i]
        sum2 += data2[i]
    mean1 = sum1 / M
    mean2 = sum2 / M

    var_sum1 = 0.
    var_sum2 = 0.
    cross_sum = 0.
    for i in range(M):
        var_sum1 += (data1[i] - mean1) ** 2
        var_sum2 += (data2[i] - mean2) ** 2
        cross_sum += (data1[i] * data2[i])

    std1 = (var_sum1 / M) ** .5
    std2 = (var_sum2 / M) ** .5
    cross_mean = cross_sum / M

    return (cross_mean - mean1 * mean2) / (std1 * std2)