Python 如何在熊猫中拆开(或旋转?)

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/24640399/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-19 04:55:29  来源:igfitidea点击:

how to unstack (or pivot?) in pandas

pythonpandasstackpivot

提问by codingknob

I have a dataframe that looks like the following:

我有一个如下所示的数据框:

import pandas as pd
datelisttemp = pd.date_range('1/1/2014', periods=3, freq='D')
s = list(datelisttemp)*3
s.sort()
df = pd.DataFrame({'BORDER':['GERMANY','FRANCE','ITALY','GERMANY','FRANCE','ITALY','GERMANY','FRANCE','ITALY' ], 'HOUR1':[2 ,2 ,2 ,4 ,4 ,4 ,6 ,6, 6],'HOUR2':[3 ,3 ,3, 5 ,5 ,5, 7, 7, 7], 'HOUR3':[8 ,8 ,8, 12 ,12 ,12, 99, 99, 99]}, index=s)

This gives me:

这给了我:

Out[458]: df

             BORDER  HOUR1  HOUR2  HOUR3
2014-01-01  GERMANY      2      3      8
2014-01-01   FRANCE      2      3      8
2014-01-01    ITALY      2      3      8
2014-01-02  GERMANY      4      5     12
2014-01-02   FRANCE      4      5     12
2014-01-02    ITALY      4      5     12
2014-01-03  GERMANY      6      7     99
2014-01-03   FRANCE      6      7     99
2014-01-03    ITALY      6      7     99

I want the final dataframe to look something like:

我希望最终的数据框看起来像:

             HOUR  GERMANY  FRANCE  ITALY
2014-01-01   1     2        2       2     
2014-01-01   2     3        3       3
2014-01-01   3     8        8       8 
2014-01-02   1     4        4       4
2014-01-02   2     5        5       5
2014-01-02   3    12       12      12
2014-01-03   1     6        6       6
2014-01-03   2     7        7       7
2014-01-03   3    99       99      99

I've done the following but I'm not quite there:

我已经完成了以下操作,但还没有完成:

df['date_col'] = df.index

df2 = melt(df, id_vars=['date_col','BORDER'])  
#Can I keep the same index after melt or do I have to set an index like below?
df2.set_index(['date_col', 'variable'], inplace=True, drop=True)
df2 = df2.sort()

df

df

Out[465]: df2

                         BORDER   value
date_col   variable                 
2014-01-01 HOUR1           GERMANY   2
           HOUR1           FRANCE    2
           HOUR1           ITALY     2
           HOUR2           GERMANY   3
           HOUR2           FRANCE    3
           HOUR2           ITALY     3
           HOUR3           GERMANY   8
           HOUR3           FRANCE    8
           HOUR3           ITALY     8
2014-01-02 HOUR1           GERMANY   4
           HOUR1           FRANCE    4
           HOUR1           ITALY     4
           HOUR2           GERMANY   5
           HOUR2           FRANCE    5
           HOUR2           ITALY     5
           HOUR3           GERMANY  12
           HOUR3           FRANCE   12
           HOUR3           ITALY    12
2014-01-03 HOUR1           GERMANY   6
           HOUR1           FRANCE    6
           HOUR1           ITALY     6
           HOUR2           GERMANY   7
           HOUR2           FRANCE    7
           HOUR2           ITALY     7
           HOUR3           GERMANY  99
           HOUR3           FRANCE   99
           HOUR3           ITALY    99

I thought I could unstack df2 to get something that resembles my final dataframe but I get all sorts of errors. I have also tried to pivot this dataframe but can't quite get what I want.

我以为我可以解开 df2 以获得类似于我的最终数据帧的东西,但是我遇到了各种各样的错误。我也尝试过旋转这个数据框,但不能完全得到我想要的。

采纳答案by unutbu

We want values (e.g. 'GERMANY') to become column names, and column names (e.g. 'HOUR1') to become values -- a swap of sorts.

我们希望值(例如'GERMANY')成为列名,而列名(例如'HOUR1')成为值——排序的交换。

The stackmethod turns column names into index values, and the unstackmethod turns index values into column names.

stack方法将列名转换为索引值,该unstack方法将索引值转换为列名。

So by shifting the values into the index, we can use stackand unstackto perform the swap.

因此,通过将值转移到索引中,我们可以使用stackunstack来执行交换。

import pandas as pd

datelisttemp = pd.date_range('1/1/2014', periods=3, freq='D')
s = list(datelisttemp)*3
s.sort()
df = pd.DataFrame({'BORDER':['GERMANY','FRANCE','ITALY','GERMANY','FRANCE','ITALY','GERMANY','FRANCE','ITALY' ], 'HOUR1':[2 ,2 ,2 ,4 ,4 ,4 ,6 ,6, 6],'HOUR2':[3 ,3 ,3, 5 ,5 ,5, 7, 7, 7], 'HOUR3':[8 ,8 ,8, 12 ,12 ,12, 99, 99, 99]}, index=s)

df = df.set_index(['BORDER'], append=True)
df.columns.name = 'HOUR'
df = df.unstack('BORDER')
df = df.stack('HOUR')
df = df.reset_index('HOUR')
df['HOUR'] = df['HOUR'].str.replace('HOUR', '').astype('int')
print(df)

yields

产量

BORDER      HOUR  FRANCE  GERMANY  ITALY
2014-01-01     1       2        2      2
2014-01-01     2       3        3      3
2014-01-01     3       8        8      8
2014-01-02     1       4        4      4
2014-01-02     2       5        5      5
2014-01-02     3      12       12     12
2014-01-03     1       6        6      6
2014-01-03     2       7        7      7
2014-01-03     3      99       99     99

回答by BrenBarn

Using your df2:

使用您的df2

>>> df2.pivot_table(values='value', index=['DATE', 'variable'], columns="BORDER")
BORDER               FRANCE  GERMANY  ITALY
DATE       variable                        
2014-01-01 HOUR1          2        2      2
           HOUR2          3        3      3
           HOUR3          8        8      8
2014-01-02 HOUR1          4        4      4
           HOUR2          5        5      5
           HOUR3         12       12     12
2014-01-03 HOUR1          6        6      6
           HOUR2          7        7      7
           HOUR3         99       99     99

[9 rows x 3 columns]

There is still a bit of cleanup to do if you want to convert the index level "variable" into a column called "HOUR" and strip out the text "HOUR" from the values, but I think that is the basic format you want.

如果您想将索引级别“变量”转换为名为“HOUR”的列并从值中去除文本“HOUR”,仍有一些清理工作要做,但我认为这是您想要的基本格式。

回答by Rafaell

Try using pivot. You can make it in one line. Eg.

尝试使用枢轴。您可以在一行中完成。例如。

df.pivot(index='start_time', columns='venue_name', values='ocupation')