Python pandas groupby 在组内排序

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/27842613/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-19 02:21:02  来源:igfitidea点击:

pandas groupby sort within groups

pythonsortingpandasgroup-by

提问by JoeDanger

I want to group my dataframe by two columns and then sort the aggregated results within the groups.

我想将我的数据框按两列分组,然后对组内的聚合结果进行排序。

In [167]:
df

Out[167]:
count   job source
0   2   sales   A
1   4   sales   B
2   6   sales   C
3   3   sales   D
4   7   sales   E
5   5   market  A
6   3   market  B
7   2   market  C
8   4   market  D
9   1   market  E

In [168]:
df.groupby(['job','source']).agg({'count':sum})

Out[168]:
            count
job     source  
market  A   5
        B   3
        C   2
        D   4
        E   1
sales   A   2
        B   4
        C   6
        D   3
        E   7

I would now like to sort the count column in descending order within each of the groups. And then take only the top three rows. To get something like:

我现在想在每个组中按降序对计数列进行排序。然后只取前三行。得到类似的东西:

            count
job     source  
market  A   5
        D   4
        B   3
sales   E   7
        C   6
        B   4

采纳答案by joris

What you want to do is actually again a groupby (on the result of the first groupby): sort and take the first three elements per group.

你想要做的实际上又是一个 groupby(在第一个 groupby 的结果上):排序并获取每组的前三个元素。

Starting from the result of the first groupby:

从第一个 groupby 的结果开始:

In [60]: df_agg = df.groupby(['job','source']).agg({'count':sum})

We group by the first level of the index:

我们按索引的第一级分组:

In [63]: g = df_agg['count'].groupby(level=0, group_keys=False)

Then we want to sort ('order') each group and take the first three elements:

然后我们要对每个组进行排序('order')并取前三个元素:

In [64]: res = g.apply(lambda x: x.order(ascending=False).head(3))

However, for this, there is a shortcut function to do this, nlargest:

但是,为此,有一个快捷功能可以做到这一点nlargest

In [65]: g.nlargest(3)
Out[65]:
job     source
market  A         5
        D         4
        B         3
sales   E         7
        C         6
        B         4
dtype: int64

回答by tvashtar

You could also just do it in one go, by doing the sort first and using head to take the first 3 of each group.

您也可以一次性完成,首先进行排序并使用 head 获取每组的前 3 个。

In[34]: df.sort_values(['job','count'],ascending=False).groupby('job').head(3)

Out[35]: 
   count     job source
4      7   sales      E
2      6   sales      C
1      4   sales      B
5      5  market      A
8      4  market      D
6      3  market      B

回答by Surya

Here's other example of taking top 3 on sorted order, and sorting within the groups:

以下是按排序顺序取前 3 名并在组内排序的其他示例:

In [43]: import pandas as pd                                                                                                                                                       

In [44]:  df = pd.DataFrame({"name":["Foo", "Foo", "Baar", "Foo", "Baar", "Foo", "Baar", "Baar"], "count_1":[5,10,12,15,20,25,30,35], "count_2" :[100,150,100,25,250,300,400,500]})

In [45]: df                                                                                                                                                                        
Out[45]: 
   count_1  count_2  name
0        5      100   Foo
1       10      150   Foo
2       12      100  Baar
3       15       25   Foo
4       20      250  Baar
5       25      300   Foo
6       30      400  Baar
7       35      500  Baar


### Top 3 on sorted order:
In [46]: df.groupby(["name"])["count_1"].nlargest(3)                                                                                                                               
Out[46]: 
name   
Baar  7    35
      6    30
      4    20
Foo   5    25
      3    15
      1    10
dtype: int64


### Sorting within groups based on column "count_1":
In [48]: df.groupby(["name"]).apply(lambda x: x.sort_values(["count_1"], ascending = False)).reset_index(drop=True)
Out[48]: 
   count_1  count_2  name
0       35      500  Baar
1       30      400  Baar
2       20      250  Baar
3       12      100  Baar
4       25      300   Foo
5       15       25   Foo
6       10      150   Foo
7        5      100   Foo

回答by Ted Petrou

If you don't need to sum a column, then use @tvashtar's answer. If you do need to sum, then you can use @joris' answer or this one which is very similar to it.

如果您不需要对一列求和,请使用@tvashtar 的答案。如果您确实需要求和,那么您可以使用@joris 的答案或与之非常相似的答案。

df.groupby(['job']).apply(lambda x: (x.groupby('source')
                                      .sum()
                                      .sort_values('count', ascending=False))
                                     .head(3))

回答by SSCSWAPNIL

Try this Instead

试试这个

simple way to do 'groupby' and sorting in descending order

执行“groupby”并按降序排序的简单方法

df.groupby(['companyName'])['overallRating'].sum().sort_values(ascending=False).head(20)