Python Pandas:按位置访问的索引更新和更改值

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/20997082/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-18 21:45:40  来源:igfitidea点击:

Pandas: Index updating and changing value accessed by location

pythonindexingpandasdataframe

提问by Zhubarb

I have two index-related questions on Python Pandas dataframes.

我有两个关于 Python Pandas 数据帧的索引相关问题。

import pandas as pd
import numpy as np
df = pd.DataFrame({'id' : range(1,9),
                'B' : ['one', 'one', 'two', 'three',
                       'two', 'three', 'one', 'two'],
                'amount' : np.random.randn(8)})

df = df.ix[df.B != 'three'] # remove where B = three
df.index
>>  Int64Index([0, 1, 2, 4, 6, 7], dtype=int64) # the original index is preserved.

1)I do not understand why the indexing is not automatically updated after I modify the dataframe. Is there a way to automatically update the indexing while modifying a dataframe? If not, what is the most efficient manual way to do this?

1)我不明白为什么修改数据框后索引不会自动更新。有没有办法在修改数据帧时自动更新索引?如果没有,最有效的手动方法是什么?

2)I want to be able to set the Bcolumn of the 5th element of dfto 'three'. But df.iloc[5]['B'] = 'three'does not do that. I checked on the manualbut it does not cover how to change a specific cell value accessed by location.

2)我希望能够B将第 5 个元素的列设置df为“三”。但df.iloc[5]['B'] = 'three'不这样做。我查看了手册,但它没有涵盖如何更改按位置访问的特定单元格值。

If I were accessing by row name, I could do: df.loc[5,'B'] = 'three'but I don't know what the index access equivalent is.

如果我按行名访问,我可以这样做:df.loc[5,'B'] = 'three'但我不知道索引访问等价物是什么。

P.S. Link1and link2are relevant answers to my second question. However, they do not answer my question.

PS Link1link2是我的第二个问题的相关答案。但是,他们没有回答我的问题。

采纳答案by Briford Wylie

1) I do not understand why the indexing is not automatically updated after I modify the dataframe.

1)我不明白为什么修改数据框后索引不会自动更新。

If you want to reset the index after removing/adding rows you can do this:

如果您想在删除/添加行后重置索引,您可以执行以下操作:

df = df[df.B != 'three'] # remove where B = three
df.reset_index(drop=True)

       B    amount  id
0    one    -1.176137    1
1    one     0.434470    2
2    two    -0.887526    3
3    two     0.126969    5
4    one     0.090442    7
5    two    -1.511353    8

Indexes are meant to label/tag/id a row... so you might think about making your 'id' column the index, and then you'll appreciate that Pandas doesn't 'automatically update' the index when deleting rows.

索引旨在标记/标记/识别一行……所以您可能会考虑将“id”列作为索引,然后您会意识到 Pandas 在删除行时不会“自动更新”索引。

df.set_index('id')

       B    amount
id      
1    one    -0.410671
2    one     0.092931
3    two    -0.100324
4    three   0.322580
5    two    -0.546932
6    three  -2.018198
7    one    -0.459551
8    two     1.254597

2) I want to be able to set the B column of the 5th element of df to 'three'. But df.iloc[5]['B'] = 'three' does not do that. I checked on the manual but it does not cover how to change a specific cell value accessed by location.

2)我希望能够将 df 的第 5 个元素的 B 列设置为“三”。但是 df.iloc[5]['B'] = 'three' 不会这样做。我查看了手册,但它没有涵盖如何更改按位置访问的特定单元格值。

Jeff already answered this...

杰夫已经回答了这个......

回答by Jeff

In [5]: df = pd.DataFrame({'id' : range(1,9),
   ...:                 'B' : ['one', 'one', 'two', 'three',
   ...:                        'two', 'three', 'one', 'two'],
   ...:                 'amount' : np.random.randn(8)})

In [6]: df
Out[6]: 
       B    amount  id
0    one -1.236735   1
1    one -0.427070   2
2    two -2.330888   3
3  three -0.654062   4
4    two  0.587660   5
5  three -0.719589   6
6    one  0.860739   7
7    two -2.041390   8

[8 rows x 3 columns]

Your question 1) your code above is correct (see @Briford Wylie for resetting the index, which is what I think you want)

您的问题 1)您上面的代码是正确的(请参阅@Briford Wylie 以重置索引,这是我认为您想要的)

In [7]: df.ix[df.B!='three']
Out[7]: 
     B    amount  id
0  one -1.236735   1
1  one -0.427070   2
2  two -2.330888   3
4  two  0.587660   5
6  one  0.860739   7
7  two -2.041390   8

[6 rows x 3 columns]

In [8]: df = df.ix[df.B!='three']

In [9]: df.index
Out[9]: Int64Index([0, 1, 2, 4, 6, 7], dtype='int64')

In [10]: df.iloc[5]
Out[10]: 
B             two
amount   -2.04139
id              8
Name: 7, dtype: object

Question 2):

问题2):

You are trying to set a copy; In 0.13 this will raise/warn. see here

您正在尝试设置副本;在 0.13 中,这将引发/警告。看这里

In [11]: df.iloc[5]['B'] = 5
/usr/local/bin/ipython:1: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.

In [24]: df.iloc[5,df.columns.get_indexer(['B'])] = 'foo'

In [25]: df
Out[25]: 
     B    amount  id
0  one -1.236735   1
1  one -0.427070   2
2  two -2.330888   3
4  two  0.587660   5
6  one  0.860739   7
7  foo -2.041390   8

[6 rows x 3 columns]

You can also do this. This is NOT setting a copy and since it selects a Series (that is what df['B']is, then it CAN be set directly

你也可以这样做。这不是设置副本,因为它选择了一个系列(就是这样df['B'],那么它可以直接设置

In [30]: df['B'].iloc[5] = 5

In [31]: df
Out[31]: 
     B    amount  id
0  one -1.236735   1
1  one -0.427070   2
2  two -2.330888   3
4  two  0.587660   5
6  one  0.860739   7
7    5 -2.041390   8

[6 rows x 3 columns]