Python 熊猫系列得到“数据必须是一维的”错误
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/43192626/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
pandas Series getting 'Data must be 1-dimensional' error
提问by R Syed
I'm new to pandas & numpy. I'm running a simple program
我是熊猫和麻木的新手。我正在运行一个简单的程序
labels = ['a','b','c','d','e']
s = Series(randn(5),index=labels)
print(s)
getting the following error
收到以下错误
s = Series(randn(5),index=labels) File "C:\Python27\lib\site-packages\pandas\core\series.py", line 243, in
__init__
raise_cast_failure=True) File "C:\Python27\lib\site-packages\pandas\core\series.py", line 2950, in
_sanitize_array
raise Exception('Data must be 1-dimensional') Exception: Data must be 1-dimensional
Any idea what can be the issue? I'm trying this using eclipse, not using ipython notebook.
知道可能是什么问题吗?我正在尝试使用 eclipse,而不是使用 ipython notebook。
采纳答案by piRSquared
I suspect you have your imports wrong
我怀疑你的进口错了
If you add this to your code
如果您将此添加到您的代码中
from pandas import Series
from numpy.random import randn
labels = ['a','b','c','d','e']
s = Series(randn(5),index=labels)
print(s)
a 0.895322
b 0.949709
c -0.502680
d -0.511937
e -1.550810
dtype: float64
It runs fine.
它运行良好。
That said, and as pointed out by @jezrael, it's better practice to import the the modules rather than pollute the namespace.
也就是说,正如@jezrael 所指出的,导入模块而不是污染命名空间是更好的做法。
Your code should look like this instead.
您的代码应该如下所示。
solution
解决方案
import pandas as pd
import numpy as np
labels = ['a','b','c','d','e']
s = pd.Series(np.random.randn(5),index=labels)
print(s)
回答by jezrael
It seems you need numpy.random.rand
for random floats
or numpy.random.randint
for random integers
:
似乎您需要numpy.random.rand
随机floats
或numpy.random.randint
随机integers
:
import pandas as pd
import numpy as np
np.random.seed(100)
labels = ['a','b','c','d','e']
s = pd.Series(np.random.randn(5),index=labels)
print(s)
a -1.749765
b 0.342680
c 1.153036
d -0.252436
e 0.981321
dtype: float64
np.random.seed(100)
labels = ['a','b','c','d','e']
s = pd.Series(np.random.randint(10, size=5),index=labels)
print(s)
a 8
b 8
c 3
d 7
e 7
dtype: int32