Python 返回给定两点的直线方程的方法

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/21565994/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-18 23:08:45  来源:igfitidea点击:

Method to return the equation of a straight line given two points

pythonpython-3.x

提问by reggaelizard

I have a class Point, consisting of a point with x and y coordinates, and I have to write a method that computes and returns the equation of a straight line joining a Pointobject and another Pointobject that is passed as an argument (my_point.get_straight_line(my_point2). I know how to calculate that on paper with y-y1= m(x-x1) and I already have a method my_point.slope(my_point2)to compute m, but I can't really wrap my head around how to translate the equation to Python. Here's the entire class:

我有一个类Point,由一个带有 x 和 y 坐标的点组成,我必须编写一个方法来计算并返回连接一个Point对象和另一个Point作为参数传递的对象的直线的方程(my_point.get_straight_line(my_point2)。我知道如何在纸上用 yy 1= m(xx 1)my_point.slope(my_point2)计算m,我已经有了计算的方法,但我无法真正理解如何将方程转换为 Python。这是整个课程:

class Point:
    def __init__(self,initx,inity):
        self.x = initx
        self.y = inity

    def getx(self):
        return self.x

    def gety(self):
        return self.y

    def negx(self):
        return -(self.x)

    def negy(self):
        return -(self.y)

    def __str__(self):
        return 'x=' + str(self.x) + ', y=' + str(self.y)

    def halfway(self,target):
        midx = (self.x + target.x) / 2
        midy = (self.y + target.y) / 2
        return Point(midx, midy)

    def distance(self,target):
        xdiff = target.x - self.x
        ydiff = target.y - self.y
        dist = math.sqrt(xdiff**2 + ydiff**2)
        return dist

    def reflect_x(self):
        return Point(self.negx(),self.y)

    def reflect_y(self):
        return Point(self.x,self.negy())

    def reflect_x_y(self):
        return Point(self.negx(),self.negy())

    def slope_from_origin(self):
        if self.x == 0:
            return None
        else:
            return self.y / self.x

    def slope(self,target):
        if target.x == self.x:
            return None
        else:
            m = (target.y - self.y) / (target.x - self.x)
            return m

Any help is appreciated.

任何帮助表示赞赏。

EDIT:I figured it out with an equation that computes cand then just returns it in a string along with self.slope(target)! This turned out to be way less complicated than I thought.

编辑:我用一个计算公式计算出来c,然后将它与self.slope(target)! 结果证明这比我想象的要简单得多。

def get_line_to(self,target):
    c = -(self.slope(target)*self.x - self.y)
    return 'y = ' + str(self.slope(target)) + 'x + ' + str(c)

回答by Joran Beasley

from numpy import ones,vstack
from numpy.linalg import lstsq
points = [(1,5),(3,4)]
x_coords, y_coords = zip(*points)
A = vstack([x_coords,ones(len(x_coords))]).T
m, c = lstsq(A, y_coords)[0]
print("Line Solution is y = {m}x + {c}".format(m=m,c=c))

but really your method should be fine ...

但真的你的方法应该没问题......

回答by Hugh Bothwell

I cleaned it up a bit; see what you think.

我清理了一下;看看你的想法。

def slope(dx, dy):
    return (dy / dx) if dx else None

class Point:
    def __init__(self, x, y):
        self.x = x
        self.y = y

    def __str__(self):
        return '({}, {})'.format(self.x, self.y)

    def __repr__(self):
        return 'Point({}, {})'.format(self.x, self.y)

    def halfway(self, target):
        midx = (self.x + target.x) / 2
        midy = (self.y + target.y) / 2
        return Point(midx, midy)

    def distance(self, target):
        dx = target.x - self.x
        dy = target.y - self.y
        return (dx*dx + dy*dy) ** 0.5

    def reflect_x(self):
        return Point(-self.x,self.y)

    def reflect_y(self):
        return Point(self.x,-self.y)

    def reflect_x_y(self):
        return Point(-self.x, -self.y)

    def slope_from_origin(self):
        return slope(self.x, self.y)

    def slope(self, target):
        return slope(target.x - self.x, target.y - self.y)

    def y_int(self, target):       # <= here's the magic
        return self.y - self.slope(target)*self.x

    def line_equation(self, target):
        slope = self.slope(target)

        y_int = self.y_int(target)
        if y_int < 0:
            y_int = -y_int
            sign = '-'
        else:
            sign = '+'

        return 'y = {}x {} {}'.format(slope, sign, y_int)

    def line_function(self, target):
        slope = self.slope(target)
        y_int = self.y_int(target)
        def fn(x):
            return slope*x + y_int
        return fn

and here are some use examples:

以下是一些使用示例:

a = Point(2., 2.)
b = Point(4., 3.)

print(a)                   # => (2.0, 2.0)
print(repr(b))             # => Point(4.0, 3.0)
print(a.halfway(b))        # => (3.0, 2.5)

print(a.slope(b))          # => 0.5
print(a.y_int(b))          # => 1.0
print(a.line_equation(b))  # => y = 0.5x + 1.0

line = a.line_function(b)
print(line(x=6.))          # => 4.0

回答by funk

Let's assume that we have the following points:

让我们假设我们有以下几点:

P0: ( x0 = 100, y0 = 240 )

P1: ( x1 = 400, y1 = 265 )

P0: ( x0 = 100, y0 = 240 )

P1: ( x1 = 400, y1 = 265 )

We can compute the coefficients of the line y = a*x + b that connects the two points using the polyfitmethod from numpy.

我们可以使用numpy 中polyfit方法计算连接两点的直线 y = a*x + b 的系数。

import numpy as np
import matplotlib.pyplot as plt

# Define the known points
x = [100, 400]
y = [240, 265]

# Calculate the coefficients. This line answers the initial question. 
coefficients = np.polyfit(x, y, 1)

# Print the findings
print 'a =', coefficients[0]
print 'b =', coefficients[1]

# Let's compute the values of the line...
polynomial = np.poly1d(coefficients)
x_axis = np.linspace(0,500,100)
y_axis = polynomial(x_axis)

# ...and plot the points and the line
plt.plot(x_axis, y_axis)
plt.plot( x[0], y[0], 'go' )
plt.plot( x[1], y[1], 'go' )
plt.grid('on')
plt.show()

a = 0.0833333333333

a = 0.08333333333333

b = 231.666666667

b = 231.666666667

enter image description here

在此处输入图片说明



For installing numpy: http://docs.scipy.org/doc/numpy/user/install.html

安装 numpy:http: //docs.scipy.org/doc/numpy/user/install.html

回答by ironmann350

I think you are making pretty advanced code, but you are making it complicated. Here is a function that can do that:

我认为您正在编写非常高级的代码,但您使其变得复杂。这是一个可以做到这一点的函数:

from decimal import Decimal


def lin_equ(l1, l2):
    """Line encoded as l=(x,y)."""
    m = Decimal((l2[1] - l1[1])) / Decimal(l2[0] - l1[0])
    c = (l2[1] - (m * l2[0]))
    return m, c

# Example Usage:
lin_equ((-40, 30,), (20, 45))

# Result: (Decimal('0.25'), Decimal('40.00'))

回答by Pavan Shetkar

class Line(object):

    def __init__(self,coor1,coor2):
        self.coor1 = coor1
        self.coor2 = coor2


    def distance(self):
        x1,y1 = self.coor1
        x2,y2 = self.coor2
        return ((x2-x1)**2+(y2-y1)**2)**0.5    

    def slope(self):
        x1,x2 = self.coor1
        y1,y2 = self.coor2
        return (float(y2-y1))/(x2-x1)